| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitmf.0 | ⊢ ( 𝜑  →  𝑊  ∈  Mnd ) | 
						
							| 2 |  | sitmf.1 | ⊢ ( 𝜑  →  𝑊  ∈  ∞MetSp ) | 
						
							| 3 |  | sitmf.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 4 |  | eqid | ⊢ ( dist ‘ 𝑊 )  =  ( dist ‘ 𝑊 ) | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 )  ∧  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) )  →  𝑊  ∈  ∞MetSp ) | 
						
							| 6 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 )  ∧  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) )  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 7 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 )  ∧  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) )  →  𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 8 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 )  ∧  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) )  →  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 9 | 4 5 6 7 8 | sitmfval | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 )  ∧  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) )  →  ( 𝑓 ( 𝑊 sitm 𝑀 ) 𝑔 )  =  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) ) | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 )  ∧  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) )  →  𝑊  ∈  Mnd ) | 
						
							| 11 | 10 5 6 7 8 | sitmcl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 )  ∧  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) )  →  ( 𝑓 ( 𝑊 sitm 𝑀 ) 𝑔 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 12 | 9 11 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 )  ∧  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ) )  →  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 13 | 12 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ∀ 𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) )  =  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) ) | 
						
							| 15 | 14 | fmpo | ⊢ ( ∀ 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ∀ 𝑔  ∈  dom  ( 𝑊 sitg 𝑀 ) ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) )  ∈  ( 0 [,] +∞ )  ↔  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom  ( 𝑊 sitg 𝑀 )  ×  dom  ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) | 
						
							| 16 | 13 15 | sylib | ⊢ ( 𝜑  →  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom  ( 𝑊 sitg 𝑀 )  ×  dom  ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) | 
						
							| 17 | 4 2 3 | sitmval | ⊢ ( 𝜑  →  ( 𝑊 sitm 𝑀 )  =  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) ) ) | 
						
							| 18 | 17 | feq1d | ⊢ ( 𝜑  →  ( ( 𝑊 sitm 𝑀 ) : ( dom  ( 𝑊 sitg 𝑀 )  ×  dom  ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ )  ↔  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom  ( 𝑊 sitg 𝑀 )  ×  dom  ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( 𝜑  →  ( 𝑊 sitm 𝑀 ) : ( dom  ( 𝑊 sitg 𝑀 )  ×  dom  ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) |