Metamath Proof Explorer


Theorem sitmf

Description: The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Hypotheses sitmf.0 ( 𝜑𝑊 ∈ Mnd )
sitmf.1 ( 𝜑𝑊 ∈ ∞MetSp )
sitmf.2 ( 𝜑𝑀 ran measures )
Assertion sitmf ( 𝜑 → ( 𝑊 sitm 𝑀 ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 sitmf.0 ( 𝜑𝑊 ∈ Mnd )
2 sitmf.1 ( 𝜑𝑊 ∈ ∞MetSp )
3 sitmf.2 ( 𝜑𝑀 ran measures )
4 eqid ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 )
5 2 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑊 ∈ ∞MetSp )
6 3 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑀 ran measures )
7 simprl ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) )
8 simprr ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) )
9 4 5 6 7 8 sitmfval ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → ( 𝑓 ( 𝑊 sitm 𝑀 ) 𝑔 ) = ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) )
10 1 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑊 ∈ Mnd )
11 10 5 6 7 8 sitmcl ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → ( 𝑓 ( 𝑊 sitm 𝑀 ) 𝑔 ) ∈ ( 0 [,] +∞ ) )
12 9 11 eqeltrrd ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ∈ ( 0 [,] +∞ ) )
13 12 ralrimivva ( 𝜑 → ∀ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∀ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ∈ ( 0 [,] +∞ ) )
14 eqid ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) )
15 14 fmpo ( ∀ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∀ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ∈ ( 0 [,] +∞ ) ↔ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) )
16 13 15 sylib ( 𝜑 → ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) )
17 4 2 3 sitmval ( 𝜑 → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ) )
18 17 feq1d ( 𝜑 → ( ( 𝑊 sitm 𝑀 ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ↔ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) )
19 16 18 mpbird ( 𝜑 → ( 𝑊 sitm 𝑀 ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) )