| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitmf.0 |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
| 2 |
|
sitmf.1 |
⊢ ( 𝜑 → 𝑊 ∈ ∞MetSp ) |
| 3 |
|
sitmf.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
| 4 |
|
eqid |
⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑊 ∈ ∞MetSp ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑀 ∈ ∪ ran measures ) |
| 7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
| 8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
| 9 |
4 5 6 7 8
|
sitmfval |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → ( 𝑓 ( 𝑊 sitm 𝑀 ) 𝑔 ) = ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → 𝑊 ∈ Mnd ) |
| 11 |
10 5 6 7 8
|
sitmcl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → ( 𝑓 ( 𝑊 sitm 𝑀 ) 𝑔 ) ∈ ( 0 [,] +∞ ) ) |
| 12 |
9 11
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∧ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ) ) → ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ∈ ( 0 [,] +∞ ) ) |
| 13 |
12
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∀ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ∈ ( 0 [,] +∞ ) ) |
| 14 |
|
eqid |
⊢ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) |
| 15 |
14
|
fmpo |
⊢ ( ∀ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ∀ 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ∈ ( 0 [,] +∞ ) ↔ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) |
| 16 |
13 15
|
sylib |
⊢ ( 𝜑 → ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) |
| 17 |
4 2 3
|
sitmval |
⊢ ( 𝜑 → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) ) |
| 18 |
17
|
feq1d |
⊢ ( 𝜑 → ( ( 𝑊 sitm 𝑀 ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ↔ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) ) |
| 19 |
16 18
|
mpbird |
⊢ ( 𝜑 → ( 𝑊 sitm 𝑀 ) : ( dom ( 𝑊 sitg 𝑀 ) × dom ( 𝑊 sitg 𝑀 ) ) ⟶ ( 0 [,] +∞ ) ) |