Step |
Hyp |
Ref |
Expression |
1 |
|
sitmf.0 |
|- ( ph -> W e. Mnd ) |
2 |
|
sitmf.1 |
|- ( ph -> W e. *MetSp ) |
3 |
|
sitmf.2 |
|- ( ph -> M e. U. ran measures ) |
4 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
5 |
2
|
adantr |
|- ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> W e. *MetSp ) |
6 |
3
|
adantr |
|- ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> M e. U. ran measures ) |
7 |
|
simprl |
|- ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> f e. dom ( W sitg M ) ) |
8 |
|
simprr |
|- ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> g e. dom ( W sitg M ) ) |
9 |
4 5 6 7 8
|
sitmfval |
|- ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> ( f ( W sitm M ) g ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) |
10 |
1
|
adantr |
|- ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> W e. Mnd ) |
11 |
10 5 6 7 8
|
sitmcl |
|- ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> ( f ( W sitm M ) g ) e. ( 0 [,] +oo ) ) |
12 |
9 11
|
eqeltrrd |
|- ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) e. ( 0 [,] +oo ) ) |
13 |
12
|
ralrimivva |
|- ( ph -> A. f e. dom ( W sitg M ) A. g e. dom ( W sitg M ) ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) e. ( 0 [,] +oo ) ) |
14 |
|
eqid |
|- ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) |
15 |
14
|
fmpo |
|- ( A. f e. dom ( W sitg M ) A. g e. dom ( W sitg M ) ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) e. ( 0 [,] +oo ) <-> ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) ) |
16 |
13 15
|
sylib |
|- ( ph -> ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) ) |
17 |
4 2 3
|
sitmval |
|- ( ph -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) ) |
18 |
17
|
feq1d |
|- ( ph -> ( ( W sitm M ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) <-> ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) ) ) |
19 |
16 18
|
mpbird |
|- ( ph -> ( W sitm M ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) ) |