| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitmf.0 |  |-  ( ph -> W e. Mnd ) | 
						
							| 2 |  | sitmf.1 |  |-  ( ph -> W e. *MetSp ) | 
						
							| 3 |  | sitmf.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 4 |  | eqid |  |-  ( dist ` W ) = ( dist ` W ) | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> W e. *MetSp ) | 
						
							| 6 | 3 | adantr |  |-  ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> M e. U. ran measures ) | 
						
							| 7 |  | simprl |  |-  ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> f e. dom ( W sitg M ) ) | 
						
							| 8 |  | simprr |  |-  ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> g e. dom ( W sitg M ) ) | 
						
							| 9 | 4 5 6 7 8 | sitmfval |  |-  ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> ( f ( W sitm M ) g ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) | 
						
							| 10 | 1 | adantr |  |-  ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> W e. Mnd ) | 
						
							| 11 | 10 5 6 7 8 | sitmcl |  |-  ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> ( f ( W sitm M ) g ) e. ( 0 [,] +oo ) ) | 
						
							| 12 | 9 11 | eqeltrrd |  |-  ( ( ph /\ ( f e. dom ( W sitg M ) /\ g e. dom ( W sitg M ) ) ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) e. ( 0 [,] +oo ) ) | 
						
							| 13 | 12 | ralrimivva |  |-  ( ph -> A. f e. dom ( W sitg M ) A. g e. dom ( W sitg M ) ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) e. ( 0 [,] +oo ) ) | 
						
							| 14 |  | eqid |  |-  ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) | 
						
							| 15 | 14 | fmpo |  |-  ( A. f e. dom ( W sitg M ) A. g e. dom ( W sitg M ) ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) e. ( 0 [,] +oo ) <-> ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) ) | 
						
							| 16 | 13 15 | sylib |  |-  ( ph -> ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) ) | 
						
							| 17 | 4 2 3 | sitmval |  |-  ( ph -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) ) | 
						
							| 18 | 17 | feq1d |  |-  ( ph -> ( ( W sitm M ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) <-> ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF ( dist ` W ) g ) ) ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) ) ) | 
						
							| 19 | 16 18 | mpbird |  |-  ( ph -> ( W sitm M ) : ( dom ( W sitg M ) X. dom ( W sitg M ) ) --> ( 0 [,] +oo ) ) |