| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitmcl.0 |  |-  ( ph -> W e. Mnd ) | 
						
							| 2 |  | sitmcl.1 |  |-  ( ph -> W e. *MetSp ) | 
						
							| 3 |  | sitmcl.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 4 |  | sitmcl.3 |  |-  ( ph -> F e. dom ( W sitg M ) ) | 
						
							| 5 |  | sitmcl.4 |  |-  ( ph -> G e. dom ( W sitg M ) ) | 
						
							| 6 |  | eqid |  |-  ( dist ` W ) = ( dist ` W ) | 
						
							| 7 | 6 2 3 4 5 | sitmfval |  |-  ( ph -> ( F ( W sitm M ) G ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF ( dist ` W ) G ) ) ) | 
						
							| 8 |  | xrge0base |  |-  ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) | 
						
							| 9 |  | xrge0topn |  |-  ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) | 
						
							| 10 | 9 | eqcomi |  |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) | 
						
							| 11 |  | eqid |  |-  ( sigaGen ` ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) = ( sigaGen ` ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) | 
						
							| 12 |  | xrge00 |  |-  0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) | 
						
							| 13 |  | ovex |  |-  ( 0 [,] +oo ) e. _V | 
						
							| 14 |  | eqid |  |-  ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) | 
						
							| 15 |  | ax-xrsvsca |  |-  *e = ( .s ` RR*s ) | 
						
							| 16 | 14 15 | ressvsca |  |-  ( ( 0 [,] +oo ) e. _V -> *e = ( .s ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) | 
						
							| 17 | 13 16 | ax-mp |  |-  *e = ( .s ` ( RR*s |`s ( 0 [,] +oo ) ) ) | 
						
							| 18 |  | ax-xrssca |  |-  RRfld = ( Scalar ` RR*s ) | 
						
							| 19 | 14 18 | resssca |  |-  ( ( 0 [,] +oo ) e. _V -> RRfld = ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) | 
						
							| 20 | 13 19 | ax-mp |  |-  RRfld = ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) | 
						
							| 21 | 20 | fveq2i |  |-  ( RRHom ` RRfld ) = ( RRHom ` ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) | 
						
							| 22 |  | ovexd |  |-  ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. _V ) | 
						
							| 23 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 24 |  | eqid |  |-  ( TopOpen ` W ) = ( TopOpen ` W ) | 
						
							| 25 |  | eqid |  |-  ( sigaGen ` ( TopOpen ` W ) ) = ( sigaGen ` ( TopOpen ` W ) ) | 
						
							| 26 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 27 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 28 |  | eqid |  |-  ( RRHom ` ( Scalar ` W ) ) = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 29 | 23 24 25 26 27 28 2 3 4 | sibff |  |-  ( ph -> F : U. dom M --> U. ( TopOpen ` W ) ) | 
						
							| 30 |  | xmstps |  |-  ( W e. *MetSp -> W e. TopSp ) | 
						
							| 31 | 23 24 | tpsuni |  |-  ( W e. TopSp -> ( Base ` W ) = U. ( TopOpen ` W ) ) | 
						
							| 32 | 2 30 31 | 3syl |  |-  ( ph -> ( Base ` W ) = U. ( TopOpen ` W ) ) | 
						
							| 33 |  | feq3 |  |-  ( ( Base ` W ) = U. ( TopOpen ` W ) -> ( F : U. dom M --> ( Base ` W ) <-> F : U. dom M --> U. ( TopOpen ` W ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( F : U. dom M --> ( Base ` W ) <-> F : U. dom M --> U. ( TopOpen ` W ) ) ) | 
						
							| 35 | 29 34 | mpbird |  |-  ( ph -> F : U. dom M --> ( Base ` W ) ) | 
						
							| 36 | 23 24 25 26 27 28 2 3 5 | sibff |  |-  ( ph -> G : U. dom M --> U. ( TopOpen ` W ) ) | 
						
							| 37 |  | feq3 |  |-  ( ( Base ` W ) = U. ( TopOpen ` W ) -> ( G : U. dom M --> ( Base ` W ) <-> G : U. dom M --> U. ( TopOpen ` W ) ) ) | 
						
							| 38 | 32 37 | syl |  |-  ( ph -> ( G : U. dom M --> ( Base ` W ) <-> G : U. dom M --> U. ( TopOpen ` W ) ) ) | 
						
							| 39 | 36 38 | mpbird |  |-  ( ph -> G : U. dom M --> ( Base ` W ) ) | 
						
							| 40 |  | dmexg |  |-  ( M e. U. ran measures -> dom M e. _V ) | 
						
							| 41 |  | uniexg |  |-  ( dom M e. _V -> U. dom M e. _V ) | 
						
							| 42 | 3 40 41 | 3syl |  |-  ( ph -> U. dom M e. _V ) | 
						
							| 43 | 35 39 42 | ofresid |  |-  ( ph -> ( F oF ( dist ` W ) G ) = ( F oF ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) G ) ) | 
						
							| 44 | 2 30 | syl |  |-  ( ph -> W e. TopSp ) | 
						
							| 45 |  | eqid |  |-  ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) | 
						
							| 46 | 23 45 | xmsxmet |  |-  ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) | 
						
							| 47 |  | xmetpsmet |  |-  ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) ) | 
						
							| 48 | 2 46 47 | 3syl |  |-  ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) ) | 
						
							| 49 |  | psmetxrge0 |  |-  ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) : ( ( Base ` W ) X. ( Base ` W ) ) --> ( 0 [,] +oo ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) : ( ( Base ` W ) X. ( Base ` W ) ) --> ( 0 [,] +oo ) ) | 
						
							| 51 |  | xrge0tps |  |-  ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp | 
						
							| 52 | 51 | a1i |  |-  ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) | 
						
							| 53 | 24 23 45 | xmstopn |  |-  ( W e. *MetSp -> ( TopOpen ` W ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) | 
						
							| 54 | 2 53 | syl |  |-  ( ph -> ( TopOpen ` W ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) | 
						
							| 55 |  | eqid |  |-  ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) | 
						
							| 56 | 55 | methaus |  |-  ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) -> ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) e. Haus ) | 
						
							| 57 | 2 46 56 | 3syl |  |-  ( ph -> ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) e. Haus ) | 
						
							| 58 | 54 57 | eqeltrd |  |-  ( ph -> ( TopOpen ` W ) e. Haus ) | 
						
							| 59 |  | haust1 |  |-  ( ( TopOpen ` W ) e. Haus -> ( TopOpen ` W ) e. Fre ) | 
						
							| 60 | 58 59 | syl |  |-  ( ph -> ( TopOpen ` W ) e. Fre ) | 
						
							| 61 | 2 46 | syl |  |-  ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) | 
						
							| 62 | 23 26 | mndidcl |  |-  ( W e. Mnd -> ( 0g ` W ) e. ( Base ` W ) ) | 
						
							| 63 | 1 62 | syl |  |-  ( ph -> ( 0g ` W ) e. ( Base ` W ) ) | 
						
							| 64 |  | xmet0 |  |-  ( ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( 0g ` W ) e. ( Base ` W ) ) -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = 0 ) | 
						
							| 65 | 61 63 64 | syl2anc |  |-  ( ph -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = 0 ) | 
						
							| 66 | 65 12 | eqtrdi |  |-  ( ph -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) | 
						
							| 67 | 23 24 25 26 27 28 2 3 4 8 44 50 5 52 60 66 | sibfof |  |-  ( ph -> ( F oF ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) G ) e. dom ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ) | 
						
							| 68 | 43 67 | eqeltrd |  |-  ( ph -> ( F oF ( dist ` W ) G ) e. dom ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ) | 
						
							| 69 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 70 | 69 69 | xpeq12i |  |-  ( RR X. RR ) = ( ( Base ` RRfld ) X. ( Base ` RRfld ) ) | 
						
							| 71 | 70 | reseq2i |  |-  ( ( dist ` RRfld ) |` ( RR X. RR ) ) = ( ( dist ` RRfld ) |` ( ( Base ` RRfld ) X. ( Base ` RRfld ) ) ) | 
						
							| 72 |  | xrge0cmn |  |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd | 
						
							| 73 | 72 | a1i |  |-  ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) | 
						
							| 74 |  | rerrext |  |-  RRfld e. RRExt | 
						
							| 75 | 20 74 | eqeltrri |  |-  ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) e. RRExt | 
						
							| 76 | 75 | a1i |  |-  ( ph -> ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) e. RRExt ) | 
						
							| 77 |  | rrhre |  |-  ( RRHom ` RRfld ) = ( _I |` RR ) | 
						
							| 78 | 77 | imaeq1i |  |-  ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) = ( ( _I |` RR ) " ( 0 [,) +oo ) ) | 
						
							| 79 |  | 0re |  |-  0 e. RR | 
						
							| 80 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 81 |  | icossre |  |-  ( ( 0 e. RR /\ +oo e. RR* ) -> ( 0 [,) +oo ) C_ RR ) | 
						
							| 82 | 79 80 81 | mp2an |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 83 |  | resiima |  |-  ( ( 0 [,) +oo ) C_ RR -> ( ( _I |` RR ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo ) ) | 
						
							| 84 | 82 83 | ax-mp |  |-  ( ( _I |` RR ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo ) | 
						
							| 85 | 78 84 | eqtri |  |-  ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo ) | 
						
							| 86 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 87 | 85 86 | eqsstri |  |-  ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) C_ ( 0 [,] +oo ) | 
						
							| 88 | 87 | sseli |  |-  ( m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) -> m e. ( 0 [,] +oo ) ) | 
						
							| 89 | 88 | 3ad2ant2 |  |-  ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> m e. ( 0 [,] +oo ) ) | 
						
							| 90 |  | simp3 |  |-  ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> x e. ( 0 [,] +oo ) ) | 
						
							| 91 |  | ge0xmulcl |  |-  ( ( m e. ( 0 [,] +oo ) /\ x e. ( 0 [,] +oo ) ) -> ( m *e x ) e. ( 0 [,] +oo ) ) | 
						
							| 92 | 89 90 91 | syl2anc |  |-  ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> ( m *e x ) e. ( 0 [,] +oo ) ) | 
						
							| 93 | 8 10 11 12 17 21 22 3 68 20 71 52 73 76 92 | sitgclg |  |-  ( ph -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF ( dist ` W ) G ) ) e. ( 0 [,] +oo ) ) | 
						
							| 94 | 7 93 | eqeltrd |  |-  ( ph -> ( F ( W sitm M ) G ) e. ( 0 [,] +oo ) ) |