| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitmcl.0 |
|- ( ph -> W e. Mnd ) |
| 2 |
|
sitmcl.1 |
|- ( ph -> W e. *MetSp ) |
| 3 |
|
sitmcl.2 |
|- ( ph -> M e. U. ran measures ) |
| 4 |
|
sitmcl.3 |
|- ( ph -> F e. dom ( W sitg M ) ) |
| 5 |
|
sitmcl.4 |
|- ( ph -> G e. dom ( W sitg M ) ) |
| 6 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
| 7 |
6 2 3 4 5
|
sitmfval |
|- ( ph -> ( F ( W sitm M ) G ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF ( dist ` W ) G ) ) ) |
| 8 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 9 |
|
xrge0topn |
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 10 |
9
|
eqcomi |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 11 |
|
eqid |
|- ( sigaGen ` ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) = ( sigaGen ` ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) |
| 12 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 13 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
| 14 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 15 |
|
ax-xrsvsca |
|- *e = ( .s ` RR*s ) |
| 16 |
14 15
|
ressvsca |
|- ( ( 0 [,] +oo ) e. _V -> *e = ( .s ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
| 17 |
13 16
|
ax-mp |
|- *e = ( .s ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 18 |
|
ax-xrssca |
|- RRfld = ( Scalar ` RR*s ) |
| 19 |
14 18
|
resssca |
|- ( ( 0 [,] +oo ) e. _V -> RRfld = ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
| 20 |
13 19
|
ax-mp |
|- RRfld = ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 21 |
20
|
fveq2i |
|- ( RRHom ` RRfld ) = ( RRHom ` ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
| 22 |
|
ovexd |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. _V ) |
| 23 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 24 |
|
eqid |
|- ( TopOpen ` W ) = ( TopOpen ` W ) |
| 25 |
|
eqid |
|- ( sigaGen ` ( TopOpen ` W ) ) = ( sigaGen ` ( TopOpen ` W ) ) |
| 26 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 27 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 28 |
|
eqid |
|- ( RRHom ` ( Scalar ` W ) ) = ( RRHom ` ( Scalar ` W ) ) |
| 29 |
23 24 25 26 27 28 2 3 4
|
sibff |
|- ( ph -> F : U. dom M --> U. ( TopOpen ` W ) ) |
| 30 |
|
xmstps |
|- ( W e. *MetSp -> W e. TopSp ) |
| 31 |
23 24
|
tpsuni |
|- ( W e. TopSp -> ( Base ` W ) = U. ( TopOpen ` W ) ) |
| 32 |
2 30 31
|
3syl |
|- ( ph -> ( Base ` W ) = U. ( TopOpen ` W ) ) |
| 33 |
|
feq3 |
|- ( ( Base ` W ) = U. ( TopOpen ` W ) -> ( F : U. dom M --> ( Base ` W ) <-> F : U. dom M --> U. ( TopOpen ` W ) ) ) |
| 34 |
32 33
|
syl |
|- ( ph -> ( F : U. dom M --> ( Base ` W ) <-> F : U. dom M --> U. ( TopOpen ` W ) ) ) |
| 35 |
29 34
|
mpbird |
|- ( ph -> F : U. dom M --> ( Base ` W ) ) |
| 36 |
23 24 25 26 27 28 2 3 5
|
sibff |
|- ( ph -> G : U. dom M --> U. ( TopOpen ` W ) ) |
| 37 |
|
feq3 |
|- ( ( Base ` W ) = U. ( TopOpen ` W ) -> ( G : U. dom M --> ( Base ` W ) <-> G : U. dom M --> U. ( TopOpen ` W ) ) ) |
| 38 |
32 37
|
syl |
|- ( ph -> ( G : U. dom M --> ( Base ` W ) <-> G : U. dom M --> U. ( TopOpen ` W ) ) ) |
| 39 |
36 38
|
mpbird |
|- ( ph -> G : U. dom M --> ( Base ` W ) ) |
| 40 |
|
dmexg |
|- ( M e. U. ran measures -> dom M e. _V ) |
| 41 |
|
uniexg |
|- ( dom M e. _V -> U. dom M e. _V ) |
| 42 |
3 40 41
|
3syl |
|- ( ph -> U. dom M e. _V ) |
| 43 |
35 39 42
|
ofresid |
|- ( ph -> ( F oF ( dist ` W ) G ) = ( F oF ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) G ) ) |
| 44 |
2 30
|
syl |
|- ( ph -> W e. TopSp ) |
| 45 |
|
eqid |
|- ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |
| 46 |
23 45
|
xmsxmet |
|- ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 47 |
|
xmetpsmet |
|- ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) ) |
| 48 |
2 46 47
|
3syl |
|- ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) ) |
| 49 |
|
psmetxrge0 |
|- ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) : ( ( Base ` W ) X. ( Base ` W ) ) --> ( 0 [,] +oo ) ) |
| 50 |
48 49
|
syl |
|- ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) : ( ( Base ` W ) X. ( Base ` W ) ) --> ( 0 [,] +oo ) ) |
| 51 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
| 52 |
51
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
| 53 |
24 23 45
|
xmstopn |
|- ( W e. *MetSp -> ( TopOpen ` W ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 54 |
2 53
|
syl |
|- ( ph -> ( TopOpen ` W ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 55 |
|
eqid |
|- ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 56 |
55
|
methaus |
|- ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) -> ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) e. Haus ) |
| 57 |
2 46 56
|
3syl |
|- ( ph -> ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) e. Haus ) |
| 58 |
54 57
|
eqeltrd |
|- ( ph -> ( TopOpen ` W ) e. Haus ) |
| 59 |
|
haust1 |
|- ( ( TopOpen ` W ) e. Haus -> ( TopOpen ` W ) e. Fre ) |
| 60 |
58 59
|
syl |
|- ( ph -> ( TopOpen ` W ) e. Fre ) |
| 61 |
2 46
|
syl |
|- ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 62 |
23 26
|
mndidcl |
|- ( W e. Mnd -> ( 0g ` W ) e. ( Base ` W ) ) |
| 63 |
1 62
|
syl |
|- ( ph -> ( 0g ` W ) e. ( Base ` W ) ) |
| 64 |
|
xmet0 |
|- ( ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( 0g ` W ) e. ( Base ` W ) ) -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = 0 ) |
| 65 |
61 63 64
|
syl2anc |
|- ( ph -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = 0 ) |
| 66 |
65 12
|
eqtrdi |
|- ( ph -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
| 67 |
23 24 25 26 27 28 2 3 4 8 44 50 5 52 60 66
|
sibfof |
|- ( ph -> ( F oF ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) G ) e. dom ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ) |
| 68 |
43 67
|
eqeltrd |
|- ( ph -> ( F oF ( dist ` W ) G ) e. dom ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ) |
| 69 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 70 |
69 69
|
xpeq12i |
|- ( RR X. RR ) = ( ( Base ` RRfld ) X. ( Base ` RRfld ) ) |
| 71 |
70
|
reseq2i |
|- ( ( dist ` RRfld ) |` ( RR X. RR ) ) = ( ( dist ` RRfld ) |` ( ( Base ` RRfld ) X. ( Base ` RRfld ) ) ) |
| 72 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 73 |
72
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 74 |
|
rerrext |
|- RRfld e. RRExt |
| 75 |
20 74
|
eqeltrri |
|- ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) e. RRExt |
| 76 |
75
|
a1i |
|- ( ph -> ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) e. RRExt ) |
| 77 |
|
rrhre |
|- ( RRHom ` RRfld ) = ( _I |` RR ) |
| 78 |
77
|
imaeq1i |
|- ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) = ( ( _I |` RR ) " ( 0 [,) +oo ) ) |
| 79 |
|
0re |
|- 0 e. RR |
| 80 |
|
pnfxr |
|- +oo e. RR* |
| 81 |
|
icossre |
|- ( ( 0 e. RR /\ +oo e. RR* ) -> ( 0 [,) +oo ) C_ RR ) |
| 82 |
79 80 81
|
mp2an |
|- ( 0 [,) +oo ) C_ RR |
| 83 |
|
resiima |
|- ( ( 0 [,) +oo ) C_ RR -> ( ( _I |` RR ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo ) ) |
| 84 |
82 83
|
ax-mp |
|- ( ( _I |` RR ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo ) |
| 85 |
78 84
|
eqtri |
|- ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo ) |
| 86 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 87 |
85 86
|
eqsstri |
|- ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) C_ ( 0 [,] +oo ) |
| 88 |
87
|
sseli |
|- ( m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) -> m e. ( 0 [,] +oo ) ) |
| 89 |
88
|
3ad2ant2 |
|- ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> m e. ( 0 [,] +oo ) ) |
| 90 |
|
simp3 |
|- ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> x e. ( 0 [,] +oo ) ) |
| 91 |
|
ge0xmulcl |
|- ( ( m e. ( 0 [,] +oo ) /\ x e. ( 0 [,] +oo ) ) -> ( m *e x ) e. ( 0 [,] +oo ) ) |
| 92 |
89 90 91
|
syl2anc |
|- ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> ( m *e x ) e. ( 0 [,] +oo ) ) |
| 93 |
8 10 11 12 17 21 22 3 68 20 71 52 73 76 92
|
sitgclg |
|- ( ph -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF ( dist ` W ) G ) ) e. ( 0 [,] +oo ) ) |
| 94 |
7 93
|
eqeltrd |
|- ( ph -> ( F ( W sitm M ) G ) e. ( 0 [,] +oo ) ) |