Metamath Proof Explorer


Theorem sitmcl

Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018)

Ref Expression
Hypotheses sitmcl.0
|- ( ph -> W e. Mnd )
sitmcl.1
|- ( ph -> W e. *MetSp )
sitmcl.2
|- ( ph -> M e. U. ran measures )
sitmcl.3
|- ( ph -> F e. dom ( W sitg M ) )
sitmcl.4
|- ( ph -> G e. dom ( W sitg M ) )
Assertion sitmcl
|- ( ph -> ( F ( W sitm M ) G ) e. ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 sitmcl.0
 |-  ( ph -> W e. Mnd )
2 sitmcl.1
 |-  ( ph -> W e. *MetSp )
3 sitmcl.2
 |-  ( ph -> M e. U. ran measures )
4 sitmcl.3
 |-  ( ph -> F e. dom ( W sitg M ) )
5 sitmcl.4
 |-  ( ph -> G e. dom ( W sitg M ) )
6 eqid
 |-  ( dist ` W ) = ( dist ` W )
7 6 2 3 4 5 sitmfval
 |-  ( ph -> ( F ( W sitm M ) G ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF ( dist ` W ) G ) ) )
8 xrge0base
 |-  ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) )
9 xrge0topn
 |-  ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )
10 9 eqcomi
 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )
11 eqid
 |-  ( sigaGen ` ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) = ( sigaGen ` ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) )
12 xrge00
 |-  0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) )
13 ovex
 |-  ( 0 [,] +oo ) e. _V
14 eqid
 |-  ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) )
15 ax-xrsvsca
 |-  *e = ( .s ` RR*s )
16 14 15 ressvsca
 |-  ( ( 0 [,] +oo ) e. _V -> *e = ( .s ` ( RR*s |`s ( 0 [,] +oo ) ) ) )
17 13 16 ax-mp
 |-  *e = ( .s ` ( RR*s |`s ( 0 [,] +oo ) ) )
18 ax-xrssca
 |-  RRfld = ( Scalar ` RR*s )
19 14 18 resssca
 |-  ( ( 0 [,] +oo ) e. _V -> RRfld = ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) )
20 13 19 ax-mp
 |-  RRfld = ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) )
21 20 fveq2i
 |-  ( RRHom ` RRfld ) = ( RRHom ` ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) )
22 ovexd
 |-  ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. _V )
23 eqid
 |-  ( Base ` W ) = ( Base ` W )
24 eqid
 |-  ( TopOpen ` W ) = ( TopOpen ` W )
25 eqid
 |-  ( sigaGen ` ( TopOpen ` W ) ) = ( sigaGen ` ( TopOpen ` W ) )
26 eqid
 |-  ( 0g ` W ) = ( 0g ` W )
27 eqid
 |-  ( .s ` W ) = ( .s ` W )
28 eqid
 |-  ( RRHom ` ( Scalar ` W ) ) = ( RRHom ` ( Scalar ` W ) )
29 23 24 25 26 27 28 2 3 4 sibff
 |-  ( ph -> F : U. dom M --> U. ( TopOpen ` W ) )
30 xmstps
 |-  ( W e. *MetSp -> W e. TopSp )
31 23 24 tpsuni
 |-  ( W e. TopSp -> ( Base ` W ) = U. ( TopOpen ` W ) )
32 2 30 31 3syl
 |-  ( ph -> ( Base ` W ) = U. ( TopOpen ` W ) )
33 feq3
 |-  ( ( Base ` W ) = U. ( TopOpen ` W ) -> ( F : U. dom M --> ( Base ` W ) <-> F : U. dom M --> U. ( TopOpen ` W ) ) )
34 32 33 syl
 |-  ( ph -> ( F : U. dom M --> ( Base ` W ) <-> F : U. dom M --> U. ( TopOpen ` W ) ) )
35 29 34 mpbird
 |-  ( ph -> F : U. dom M --> ( Base ` W ) )
36 23 24 25 26 27 28 2 3 5 sibff
 |-  ( ph -> G : U. dom M --> U. ( TopOpen ` W ) )
37 feq3
 |-  ( ( Base ` W ) = U. ( TopOpen ` W ) -> ( G : U. dom M --> ( Base ` W ) <-> G : U. dom M --> U. ( TopOpen ` W ) ) )
38 32 37 syl
 |-  ( ph -> ( G : U. dom M --> ( Base ` W ) <-> G : U. dom M --> U. ( TopOpen ` W ) ) )
39 36 38 mpbird
 |-  ( ph -> G : U. dom M --> ( Base ` W ) )
40 dmexg
 |-  ( M e. U. ran measures -> dom M e. _V )
41 uniexg
 |-  ( dom M e. _V -> U. dom M e. _V )
42 3 40 41 3syl
 |-  ( ph -> U. dom M e. _V )
43 35 39 42 ofresid
 |-  ( ph -> ( F oF ( dist ` W ) G ) = ( F oF ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) G ) )
44 2 30 syl
 |-  ( ph -> W e. TopSp )
45 eqid
 |-  ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) )
46 23 45 xmsxmet
 |-  ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) )
47 xmetpsmet
 |-  ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) )
48 2 46 47 3syl
 |-  ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) )
49 psmetxrge0
 |-  ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( PsMet ` ( Base ` W ) ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) : ( ( Base ` W ) X. ( Base ` W ) ) --> ( 0 [,] +oo ) )
50 48 49 syl
 |-  ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) : ( ( Base ` W ) X. ( Base ` W ) ) --> ( 0 [,] +oo ) )
51 xrge0tps
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp
52 51 a1i
 |-  ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp )
53 24 23 45 xmstopn
 |-  ( W e. *MetSp -> ( TopOpen ` W ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) )
54 2 53 syl
 |-  ( ph -> ( TopOpen ` W ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) )
55 eqid
 |-  ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) )
56 55 methaus
 |-  ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) -> ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) e. Haus )
57 2 46 56 3syl
 |-  ( ph -> ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) e. Haus )
58 54 57 eqeltrd
 |-  ( ph -> ( TopOpen ` W ) e. Haus )
59 haust1
 |-  ( ( TopOpen ` W ) e. Haus -> ( TopOpen ` W ) e. Fre )
60 58 59 syl
 |-  ( ph -> ( TopOpen ` W ) e. Fre )
61 2 46 syl
 |-  ( ph -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) )
62 23 26 mndidcl
 |-  ( W e. Mnd -> ( 0g ` W ) e. ( Base ` W ) )
63 1 62 syl
 |-  ( ph -> ( 0g ` W ) e. ( Base ` W ) )
64 xmet0
 |-  ( ( ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( 0g ` W ) e. ( Base ` W ) ) -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = 0 )
65 61 63 64 syl2anc
 |-  ( ph -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = 0 )
66 65 12 eqtrdi
 |-  ( ph -> ( ( 0g ` W ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( 0g ` W ) ) = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) )
67 23 24 25 26 27 28 2 3 4 8 44 50 5 52 60 66 sibfof
 |-  ( ph -> ( F oF ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) G ) e. dom ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) )
68 43 67 eqeltrd
 |-  ( ph -> ( F oF ( dist ` W ) G ) e. dom ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) )
69 rebase
 |-  RR = ( Base ` RRfld )
70 69 69 xpeq12i
 |-  ( RR X. RR ) = ( ( Base ` RRfld ) X. ( Base ` RRfld ) )
71 70 reseq2i
 |-  ( ( dist ` RRfld ) |` ( RR X. RR ) ) = ( ( dist ` RRfld ) |` ( ( Base ` RRfld ) X. ( Base ` RRfld ) ) )
72 xrge0cmn
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd
73 72 a1i
 |-  ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd )
74 rerrext
 |-  RRfld e. RRExt
75 20 74 eqeltrri
 |-  ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) e. RRExt
76 75 a1i
 |-  ( ph -> ( Scalar ` ( RR*s |`s ( 0 [,] +oo ) ) ) e. RRExt )
77 rrhre
 |-  ( RRHom ` RRfld ) = ( _I |` RR )
78 77 imaeq1i
 |-  ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) = ( ( _I |` RR ) " ( 0 [,) +oo ) )
79 0re
 |-  0 e. RR
80 pnfxr
 |-  +oo e. RR*
81 icossre
 |-  ( ( 0 e. RR /\ +oo e. RR* ) -> ( 0 [,) +oo ) C_ RR )
82 79 80 81 mp2an
 |-  ( 0 [,) +oo ) C_ RR
83 resiima
 |-  ( ( 0 [,) +oo ) C_ RR -> ( ( _I |` RR ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo ) )
84 82 83 ax-mp
 |-  ( ( _I |` RR ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo )
85 78 84 eqtri
 |-  ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) = ( 0 [,) +oo )
86 icossicc
 |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo )
87 85 86 eqsstri
 |-  ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) C_ ( 0 [,] +oo )
88 87 sseli
 |-  ( m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) -> m e. ( 0 [,] +oo ) )
89 88 3ad2ant2
 |-  ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> m e. ( 0 [,] +oo ) )
90 simp3
 |-  ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> x e. ( 0 [,] +oo ) )
91 ge0xmulcl
 |-  ( ( m e. ( 0 [,] +oo ) /\ x e. ( 0 [,] +oo ) ) -> ( m *e x ) e. ( 0 [,] +oo ) )
92 89 90 91 syl2anc
 |-  ( ( ph /\ m e. ( ( RRHom ` RRfld ) " ( 0 [,) +oo ) ) /\ x e. ( 0 [,] +oo ) ) -> ( m *e x ) e. ( 0 [,] +oo ) )
93 8 10 11 12 17 21 22 3 68 20 71 52 73 76 92 sitgclg
 |-  ( ph -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF ( dist ` W ) G ) ) e. ( 0 [,] +oo ) )
94 7 93 eqeltrd
 |-  ( ph -> ( F ( W sitm M ) G ) e. ( 0 [,] +oo ) )