Metamath Proof Explorer


Theorem sitmcl

Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018)

Ref Expression
Hypotheses sitmcl.0 φ W Mnd
sitmcl.1 φ W ∞MetSp
sitmcl.2 φ M ran measures
sitmcl.3 φ F M W
sitmcl.4 φ G M W
Assertion sitmcl φ |G - F| M W 0 +∞

Proof

Step Hyp Ref Expression
1 sitmcl.0 φ W Mnd
2 sitmcl.1 φ W ∞MetSp
3 sitmcl.2 φ M ran measures
4 sitmcl.3 φ F M W
5 sitmcl.4 φ G M W
6 eqid dist W = dist W
7 6 2 3 4 5 sitmfval φ |G - F| M W = 𝑠 * 𝑠 0 +∞ F dist W f G dM
8 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
9 xrge0topn TopOpen 𝑠 * 𝑠 0 +∞ = ordTop 𝑡 0 +∞
10 9 eqcomi ordTop 𝑡 0 +∞ = TopOpen 𝑠 * 𝑠 0 +∞
11 eqid 𝛔 ordTop 𝑡 0 +∞ = 𝛔 ordTop 𝑡 0 +∞
12 xrge00 0 = 0 𝑠 * 𝑠 0 +∞
13 ovex 0 +∞ V
14 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
15 ax-xrsvsca 𝑒 = 𝑠 *
16 14 15 ressvsca 0 +∞ V 𝑒 = 𝑠 * 𝑠 0 +∞
17 13 16 ax-mp 𝑒 = 𝑠 * 𝑠 0 +∞
18 ax-xrssca fld = Scalar 𝑠 *
19 14 18 resssca 0 +∞ V fld = Scalar 𝑠 * 𝑠 0 +∞
20 13 19 ax-mp fld = Scalar 𝑠 * 𝑠 0 +∞
21 20 fveq2i ℝHom fld = ℝHom Scalar 𝑠 * 𝑠 0 +∞
22 ovexd φ 𝑠 * 𝑠 0 +∞ V
23 eqid Base W = Base W
24 eqid TopOpen W = TopOpen W
25 eqid 𝛔 TopOpen W = 𝛔 TopOpen W
26 eqid 0 W = 0 W
27 eqid W = W
28 eqid ℝHom Scalar W = ℝHom Scalar W
29 23 24 25 26 27 28 2 3 4 sibff φ F : dom M TopOpen W
30 xmstps W ∞MetSp W TopSp
31 23 24 tpsuni W TopSp Base W = TopOpen W
32 2 30 31 3syl φ Base W = TopOpen W
33 feq3 Base W = TopOpen W F : dom M Base W F : dom M TopOpen W
34 32 33 syl φ F : dom M Base W F : dom M TopOpen W
35 29 34 mpbird φ F : dom M Base W
36 23 24 25 26 27 28 2 3 5 sibff φ G : dom M TopOpen W
37 feq3 Base W = TopOpen W G : dom M Base W G : dom M TopOpen W
38 32 37 syl φ G : dom M Base W G : dom M TopOpen W
39 36 38 mpbird φ G : dom M Base W
40 dmexg M ran measures dom M V
41 uniexg dom M V dom M V
42 3 40 41 3syl φ dom M V
43 35 39 42 ofresid φ F dist W f G = F dist W Base W × Base W f G
44 2 30 syl φ W TopSp
45 eqid dist W Base W × Base W = dist W Base W × Base W
46 23 45 xmsxmet W ∞MetSp dist W Base W × Base W ∞Met Base W
47 xmetpsmet dist W Base W × Base W ∞Met Base W dist W Base W × Base W PsMet Base W
48 2 46 47 3syl φ dist W Base W × Base W PsMet Base W
49 psmetxrge0 dist W Base W × Base W PsMet Base W dist W Base W × Base W : Base W × Base W 0 +∞
50 48 49 syl φ dist W Base W × Base W : Base W × Base W 0 +∞
51 xrge0tps 𝑠 * 𝑠 0 +∞ TopSp
52 51 a1i φ 𝑠 * 𝑠 0 +∞ TopSp
53 24 23 45 xmstopn W ∞MetSp TopOpen W = MetOpen dist W Base W × Base W
54 2 53 syl φ TopOpen W = MetOpen dist W Base W × Base W
55 eqid MetOpen dist W Base W × Base W = MetOpen dist W Base W × Base W
56 55 methaus dist W Base W × Base W ∞Met Base W MetOpen dist W Base W × Base W Haus
57 2 46 56 3syl φ MetOpen dist W Base W × Base W Haus
58 54 57 eqeltrd φ TopOpen W Haus
59 haust1 TopOpen W Haus TopOpen W Fre
60 58 59 syl φ TopOpen W Fre
61 2 46 syl φ dist W Base W × Base W ∞Met Base W
62 23 26 mndidcl W Mnd 0 W Base W
63 1 62 syl φ 0 W Base W
64 xmet0 dist W Base W × Base W ∞Met Base W 0 W Base W 0 W dist W Base W × Base W 0 W = 0
65 61 63 64 syl2anc φ 0 W dist W Base W × Base W 0 W = 0
66 65 12 eqtrdi φ 0 W dist W Base W × Base W 0 W = 0 𝑠 * 𝑠 0 +∞
67 23 24 25 26 27 28 2 3 4 8 44 50 5 52 60 66 sibfof φ F dist W Base W × Base W f G M 𝑠 * 𝑠 0 +∞
68 43 67 eqeltrd φ F dist W f G M 𝑠 * 𝑠 0 +∞
69 rebase = Base fld
70 69 69 xpeq12i 2 = Base fld × Base fld
71 70 reseq2i dist fld 2 = dist fld Base fld × Base fld
72 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
73 72 a1i φ 𝑠 * 𝑠 0 +∞ CMnd
74 rerrext fld ℝExt
75 20 74 eqeltrri Scalar 𝑠 * 𝑠 0 +∞ ℝExt
76 75 a1i φ Scalar 𝑠 * 𝑠 0 +∞ ℝExt
77 rrhre ℝHom fld = I
78 77 imaeq1i ℝHom fld 0 +∞ = I 0 +∞
79 0re 0
80 pnfxr +∞ *
81 icossre 0 +∞ * 0 +∞
82 79 80 81 mp2an 0 +∞
83 resiima 0 +∞ I 0 +∞ = 0 +∞
84 82 83 ax-mp I 0 +∞ = 0 +∞
85 78 84 eqtri ℝHom fld 0 +∞ = 0 +∞
86 icossicc 0 +∞ 0 +∞
87 85 86 eqsstri ℝHom fld 0 +∞ 0 +∞
88 87 sseli m ℝHom fld 0 +∞ m 0 +∞
89 88 3ad2ant2 φ m ℝHom fld 0 +∞ x 0 +∞ m 0 +∞
90 simp3 φ m ℝHom fld 0 +∞ x 0 +∞ x 0 +∞
91 ge0xmulcl m 0 +∞ x 0 +∞ m 𝑒 x 0 +∞
92 89 90 91 syl2anc φ m ℝHom fld 0 +∞ x 0 +∞ m 𝑒 x 0 +∞
93 8 10 11 12 17 21 22 3 68 20 71 52 73 76 92 sitgclg φ 𝑠 * 𝑠 0 +∞ F dist W f G dM 0 +∞
94 7 93 eqeltrd φ |G - F| M W 0 +∞