Metamath Proof Explorer


Theorem sitmf

Description: The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Hypotheses sitmf.0 φWMnd
sitmf.1 φW∞MetSp
sitmf.2 φMranmeasures
Assertion sitmf φ|.-.|MW:MW×MW0+∞

Proof

Step Hyp Ref Expression
1 sitmf.0 φWMnd
2 sitmf.1 φW∞MetSp
3 sitmf.2 φMranmeasures
4 eqid distW=distW
5 2 adantr φfMWgMWW∞MetSp
6 3 adantr φfMWgMWMranmeasures
7 simprl φfMWgMWfMW
8 simprr φfMWgMWgMW
9 4 5 6 7 8 sitmfval φfMWgMW|g-f|MW=𝑠*𝑠0+∞fdistWfgdM
10 1 adantr φfMWgMWWMnd
11 10 5 6 7 8 sitmcl φfMWgMW|g-f|MW0+∞
12 9 11 eqeltrrd φfMWgMW𝑠*𝑠0+∞fdistWfgdM0+∞
13 12 ralrimivva φfMWgMW𝑠*𝑠0+∞fdistWfgdM0+∞
14 eqid fMW,gMW𝑠*𝑠0+∞fdistWfgdM=fMW,gMW𝑠*𝑠0+∞fdistWfgdM
15 14 fmpo fMWgMW𝑠*𝑠0+∞fdistWfgdM0+∞fMW,gMW𝑠*𝑠0+∞fdistWfgdM:MW×MW0+∞
16 13 15 sylib φfMW,gMW𝑠*𝑠0+∞fdistWfgdM:MW×MW0+∞
17 4 2 3 sitmval φWsitmM=fMW,gMW𝑠*𝑠0+∞fdistWfgdM
18 17 feq1d φ|.-.|MW:MW×MW0+∞fMW,gMW𝑠*𝑠0+∞fdistWfgdM:MW×MW0+∞
19 16 18 mpbird φ|.-.|MW:MW×MW0+∞