Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Thierry Arnoux Integration Bochner integral df-itgm  
				
		 
		
			
		 
		Description:   Define the Bochner integral as the extension by continuity of the
       Bochnel integral for simple functions.
       Bogachev first defines 'fundamental in the mean' sequences, in
       definition 2.3.1 of Bogachev  p. 116, and notes that those are actually
       Cauchy sequences for the pseudometric ( w sitm m )  .
       He then defines the Bochner integral in chapter 2.4.4 in Bogachev 
       p. 118.  The definition of the Lebesgue integral, df-itg  .
       (Contributed by Thierry Arnoux , 13-Feb-2018) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-itgm   ⊢   itgm  =    w  ∈  V  ,  m  ∈   ⋃   ran  ⁡  measures      ⟼    metUnif  ⁡  w  sitm  m   CnExt   UnifSt  ⁡  w  ⁡  w  sitg  m           
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							citgm  class  itgm    
						
							1 
								
							 
							vw  setvar  w    
						
							2 
								
							 
							cvv  class  V    
						
							3 
								
							 
							vm  setvar  m    
						
							4 
								
							 
							cmeas  class  measures    
						
							5 
								4 
							 
							crn  class   ran  ⁡  measures      
						
							6 
								5 
							 
							cuni  class   ⋃   ran  ⁡  measures        
						
							7 
								
							 
							cmetu  class  metUnif    
						
							8 
								1 
							 
							cv  setvar  w    
						
							9 
								
							 
							csitm  class  sitm    
						
							10 
								3 
							 
							cv  setvar  m    
						
							11 
								8  10  9 
							 
							co  class  | .  -  . | m  w    
						
							12 
								11  7 
							 
							cfv  class   metUnif  ⁡  w  sitm  m     
						
							13 
								
							 
							ccnext  class  CnExt    
						
							14 
								
							 
							cuss  class  UnifSt    
						
							15 
								8  14 
							 
							cfv  class   UnifSt  ⁡  w     
						
							16 
								12  15  13 
							 
							co  class   metUnif  ⁡  w  sitm  m   CnExt   UnifSt  ⁡  w     
						
							17 
								
							 
							csitg  class  sitg    
						
							18 
								8  10  17 
							 
							co  class  w  sitg  m    
						
							19 
								18  16 
							 
							cfv  class    metUnif  ⁡  w  sitm  m   CnExt   UnifSt  ⁡  w  ⁡  w  sitg  m     
						
							20 
								1  3  2  6  19 
							 
							cmpo  class    w  ∈  V  ,  m  ∈   ⋃   ran  ⁡  measures      ⟼    metUnif  ⁡  w  sitm  m   CnExt   UnifSt  ⁡  w  ⁡  w  sitg  m        
						
							21 
								0  20 
							 
							wceq  wff   itgm  =    w  ∈  V  ,  m  ∈   ⋃   ran  ⁡  measures      ⟼    metUnif  ⁡  w  sitm  m   CnExt   UnifSt  ⁡  w  ⁡  w  sitg  m