Metamath Proof Explorer


Definition df-itgm

Description: Define the Bochner integral as the extension by continuity of the Bochnel integral for simple functions.

Bogachev first defines 'fundamental in the mean' sequences, in definition 2.3.1 of Bogachev p. 116, and notes that those are actually Cauchy sequences for the pseudometric ( w sitm m ) .

He then defines the Bochner integral in chapter 2.4.4 in Bogachev p. 118. The definition of the Lebesgue integral, df-itg .

(Contributed by Thierry Arnoux, 13-Feb-2018)

Ref Expression
Assertion df-itgm itgm = w V , m ran measures metUnif w sitm m CnExt UnifSt w w sitg m

Detailed syntax breakdown

Step Hyp Ref Expression
0 citgm class itgm
1 vw setvar w
2 cvv class V
3 vm setvar m
4 cmeas class measures
5 4 crn class ran measures
6 5 cuni class ran measures
7 cmetu class metUnif
8 1 cv setvar w
9 csitm class sitm
10 3 cv setvar m
11 8 10 9 co class |. - .| m w
12 11 7 cfv class metUnif w sitm m
13 ccnext class CnExt
14 cuss class UnifSt
15 8 14 cfv class UnifSt w
16 12 15 13 co class metUnif w sitm m CnExt UnifSt w
17 csitg class sitg
18 8 10 17 co class w sitg m
19 18 16 cfv class metUnif w sitm m CnExt UnifSt w w sitg m
20 1 3 2 6 19 cmpo class w V , m ran measures metUnif w sitm m CnExt UnifSt w w sitg m
21 0 20 wceq wff itgm = w V , m ran measures metUnif w sitm m CnExt UnifSt w w sitg m