Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Integration
Bochner integral
df-itgm
Metamath Proof Explorer
Description: Define the Bochner integral as the extension by continuity of the
Bochnel integral for simple functions.
Bogachev first defines 'fundamental in the mean' sequences, in
definition 2.3.1 of Bogachev p. 116, and notes that those are actually
Cauchy sequences for the pseudometric ( w sitm m ) .
He then defines the Bochner integral in chapter 2.4.4 in Bogachev
p. 118. The definition of the Lebesgue integral, df-itg .
(Contributed by Thierry Arnoux , 13-Feb-2018)
Ref
Expression
Assertion
df-itgm
⊢ itgm = w ∈ V , m ∈ ⋃ ran ⁡ measures ⟼ metUnif ⁡ w sitm m CnExt UnifSt ⁡ w ⁡ w sitg m
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
citgm
class itgm
1
vw
setvar w
2
cvv
class V
3
vm
setvar m
4
cmeas
class measures
5
4
crn
class ran ⁡ measures
6
5
cuni
class ⋃ ran ⁡ measures
7
cmetu
class metUnif
8
1
cv
setvar w
9
csitm
class sitm
10
3
cv
setvar m
11
8 10 9
co
class | . - . | m w
12
11 7
cfv
class metUnif ⁡ w sitm m
13
ccnext
class CnExt
14
cuss
class UnifSt
15
8 14
cfv
class UnifSt ⁡ w
16
12 15 13
co
class metUnif ⁡ w sitm m CnExt UnifSt ⁡ w
17
csitg
class sitg
18
8 10 17
co
class w sitg m
19
18 16
cfv
class metUnif ⁡ w sitm m CnExt UnifSt ⁡ w ⁡ w sitg m
20
1 3 2 6 19
cmpo
class w ∈ V , m ∈ ⋃ ran ⁡ measures ⟼ metUnif ⁡ w sitm m CnExt UnifSt ⁡ w ⁡ w sitg m
21
0 20
wceq
wff itgm = w ∈ V , m ∈ ⋃ ran ⁡ measures ⟼ metUnif ⁡ w sitm m CnExt UnifSt ⁡ w ⁡ w sitg m