Metamath Proof Explorer


Definition df-itgm

Description: Define the Bochner integral as the extension by continuity of the Bochnel integral for simple functions.

Bogachev first defines 'fundamental in the mean' sequences, in definition 2.3.1 of Bogachev p. 116, and notes that those are actually Cauchy sequences for the pseudometric ( w sitm m ) .

He then defines the Bochner integral in chapter 2.4.4 in Bogachev p. 118. The definition of the Lebesgue integral, df-itg .

(Contributed by Thierry Arnoux, 13-Feb-2018)

Ref Expression
Assertion df-itgm itgm=wV,mranmeasuresmetUnifwsitmmCnExtUnifStwwsitgm

Detailed syntax breakdown

Step Hyp Ref Expression
0 citgm classitgm
1 vw setvarw
2 cvv classV
3 vm setvarm
4 cmeas classmeasures
5 4 crn classranmeasures
6 5 cuni classranmeasures
7 cmetu classmetUnif
8 1 cv setvarw
9 csitm classsitm
10 3 cv setvarm
11 8 10 9 co class|.-.|mw
12 11 7 cfv classmetUnifwsitmm
13 ccnext classCnExt
14 cuss classUnifSt
15 8 14 cfv classUnifStw
16 12 15 13 co classmetUnifwsitmmCnExtUnifStw
17 csitg classsitg
18 8 10 17 co classwsitgm
19 18 16 cfv classmetUnifwsitmmCnExtUnifStwwsitgm
20 1 3 2 6 19 cmpo classwV,mranmeasuresmetUnifwsitmmCnExtUnifStwwsitgm
21 0 20 wceq wffitgm=wV,mranmeasuresmetUnifwsitmmCnExtUnifStwwsitgm