Step |
Hyp |
Ref |
Expression |
1 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
2 |
|
rehaus |
|- ( topGen ` ran (,) ) e. Haus |
3 |
2
|
a1i |
|- ( T. -> ( topGen ` ran (,) ) e. Haus ) |
4 |
|
rerrext |
|- RRfld e. RRExt |
5 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
6 |
|
retopn |
|- ( topGen ` ran (,) ) = ( TopOpen ` RRfld ) |
7 |
5 6
|
rrhcne |
|- ( RRfld e. RRExt -> ( RRHom ` RRfld ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
8 |
4 7
|
mp1i |
|- ( T. -> ( RRHom ` RRfld ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
9 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
10 |
1
|
toptopon |
|- ( ( topGen ` ran (,) ) e. Top <-> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) |
11 |
9 10
|
mpbi |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
12 |
|
idcn |
|- ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) -> ( _I |` RR ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
13 |
11 12
|
ax-mp |
|- ( _I |` RR ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) |
14 |
13
|
a1i |
|- ( T. -> ( _I |` RR ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
15 |
9
|
a1i |
|- ( T. -> ( topGen ` ran (,) ) e. Top ) |
16 |
|
f1oi |
|- ( _I |` QQ ) : QQ -1-1-onto-> QQ |
17 |
|
f1of |
|- ( ( _I |` QQ ) : QQ -1-1-onto-> QQ -> ( _I |` QQ ) : QQ --> QQ ) |
18 |
16 17
|
ax-mp |
|- ( _I |` QQ ) : QQ --> QQ |
19 |
|
qssre |
|- QQ C_ RR |
20 |
|
fss |
|- ( ( ( _I |` QQ ) : QQ --> QQ /\ QQ C_ RR ) -> ( _I |` QQ ) : QQ --> RR ) |
21 |
18 19 20
|
mp2an |
|- ( _I |` QQ ) : QQ --> RR |
22 |
21
|
a1i |
|- ( T. -> ( _I |` QQ ) : QQ --> RR ) |
23 |
19
|
a1i |
|- ( T. -> QQ C_ RR ) |
24 |
|
qdensere |
|- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR |
25 |
24
|
a1i |
|- ( T. -> ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR ) |
26 |
9
|
a1i |
|- ( ( ( x e. RR /\ a e. ( topGen ` ran (,) ) ) /\ x e. a ) -> ( topGen ` ran (,) ) e. Top ) |
27 |
|
simplr |
|- ( ( ( x e. RR /\ a e. ( topGen ` ran (,) ) ) /\ x e. a ) -> a e. ( topGen ` ran (,) ) ) |
28 |
|
simpr |
|- ( ( ( x e. RR /\ a e. ( topGen ` ran (,) ) ) /\ x e. a ) -> x e. a ) |
29 |
|
opnneip |
|- ( ( ( topGen ` ran (,) ) e. Top /\ a e. ( topGen ` ran (,) ) /\ x e. a ) -> a e. ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) ) |
30 |
26 27 28 29
|
syl3anc |
|- ( ( ( x e. RR /\ a e. ( topGen ` ran (,) ) ) /\ x e. a ) -> a e. ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) ) |
31 |
|
fvex |
|- ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) e. _V |
32 |
|
qex |
|- QQ e. _V |
33 |
|
elrestr |
|- ( ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) e. _V /\ QQ e. _V /\ a e. ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) ) -> ( a i^i QQ ) e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) |
34 |
31 32 33
|
mp3an12 |
|- ( a e. ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) -> ( a i^i QQ ) e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) |
35 |
30 34
|
syl |
|- ( ( ( x e. RR /\ a e. ( topGen ` ran (,) ) ) /\ x e. a ) -> ( a i^i QQ ) e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) |
36 |
|
inss2 |
|- ( a i^i QQ ) C_ QQ |
37 |
|
resiima |
|- ( ( a i^i QQ ) C_ QQ -> ( ( _I |` QQ ) " ( a i^i QQ ) ) = ( a i^i QQ ) ) |
38 |
36 37
|
ax-mp |
|- ( ( _I |` QQ ) " ( a i^i QQ ) ) = ( a i^i QQ ) |
39 |
|
inss1 |
|- ( a i^i QQ ) C_ a |
40 |
38 39
|
eqsstri |
|- ( ( _I |` QQ ) " ( a i^i QQ ) ) C_ a |
41 |
40
|
a1i |
|- ( ( ( x e. RR /\ a e. ( topGen ` ran (,) ) ) /\ x e. a ) -> ( ( _I |` QQ ) " ( a i^i QQ ) ) C_ a ) |
42 |
|
imaeq2 |
|- ( b = ( a i^i QQ ) -> ( ( _I |` QQ ) " b ) = ( ( _I |` QQ ) " ( a i^i QQ ) ) ) |
43 |
42
|
sseq1d |
|- ( b = ( a i^i QQ ) -> ( ( ( _I |` QQ ) " b ) C_ a <-> ( ( _I |` QQ ) " ( a i^i QQ ) ) C_ a ) ) |
44 |
43
|
rspcev |
|- ( ( ( a i^i QQ ) e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) /\ ( ( _I |` QQ ) " ( a i^i QQ ) ) C_ a ) -> E. b e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ( ( _I |` QQ ) " b ) C_ a ) |
45 |
35 41 44
|
syl2anc |
|- ( ( ( x e. RR /\ a e. ( topGen ` ran (,) ) ) /\ x e. a ) -> E. b e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ( ( _I |` QQ ) " b ) C_ a ) |
46 |
45
|
ex |
|- ( ( x e. RR /\ a e. ( topGen ` ran (,) ) ) -> ( x e. a -> E. b e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ( ( _I |` QQ ) " b ) C_ a ) ) |
47 |
46
|
ralrimiva |
|- ( x e. RR -> A. a e. ( topGen ` ran (,) ) ( x e. a -> E. b e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ( ( _I |` QQ ) " b ) C_ a ) ) |
48 |
47
|
ancli |
|- ( x e. RR -> ( x e. RR /\ A. a e. ( topGen ` ran (,) ) ( x e. a -> E. b e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ( ( _I |` QQ ) " b ) C_ a ) ) ) |
49 |
24
|
eleq2i |
|- ( x e. ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) <-> x e. RR ) |
50 |
49
|
biimpri |
|- ( x e. RR -> x e. ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) ) |
51 |
|
trnei |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ QQ C_ RR /\ x e. RR ) -> ( x e. ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) <-> ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) e. ( Fil ` QQ ) ) ) |
52 |
11 19 51
|
mp3an12 |
|- ( x e. RR -> ( x e. ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) <-> ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) e. ( Fil ` QQ ) ) ) |
53 |
50 52
|
mpbid |
|- ( x e. RR -> ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) e. ( Fil ` QQ ) ) |
54 |
|
isflf |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) e. ( Fil ` QQ ) /\ ( _I |` QQ ) : QQ --> RR ) -> ( x e. ( ( ( topGen ` ran (,) ) fLimf ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) ` ( _I |` QQ ) ) <-> ( x e. RR /\ A. a e. ( topGen ` ran (,) ) ( x e. a -> E. b e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ( ( _I |` QQ ) " b ) C_ a ) ) ) ) |
55 |
11 21 54
|
mp3an13 |
|- ( ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) e. ( Fil ` QQ ) -> ( x e. ( ( ( topGen ` ran (,) ) fLimf ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) ` ( _I |` QQ ) ) <-> ( x e. RR /\ A. a e. ( topGen ` ran (,) ) ( x e. a -> E. b e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ( ( _I |` QQ ) " b ) C_ a ) ) ) ) |
56 |
53 55
|
syl |
|- ( x e. RR -> ( x e. ( ( ( topGen ` ran (,) ) fLimf ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) ` ( _I |` QQ ) ) <-> ( x e. RR /\ A. a e. ( topGen ` ran (,) ) ( x e. a -> E. b e. ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ( ( _I |` QQ ) " b ) C_ a ) ) ) ) |
57 |
48 56
|
mpbird |
|- ( x e. RR -> x e. ( ( ( topGen ` ran (,) ) fLimf ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) ` ( _I |` QQ ) ) ) |
58 |
57
|
ne0d |
|- ( x e. RR -> ( ( ( topGen ` ran (,) ) fLimf ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) ` ( _I |` QQ ) ) =/= (/) ) |
59 |
58
|
adantl |
|- ( ( T. /\ x e. RR ) -> ( ( ( topGen ` ran (,) ) fLimf ( ( ( nei ` ( topGen ` ran (,) ) ) ` { x } ) |`t QQ ) ) ` ( _I |` QQ ) ) =/= (/) ) |
60 |
|
recusp |
|- RRfld e. CUnifSp |
61 |
|
cuspusp |
|- ( RRfld e. CUnifSp -> RRfld e. UnifSp ) |
62 |
60 61
|
ax-mp |
|- RRfld e. UnifSp |
63 |
6
|
uspreg |
|- ( ( RRfld e. UnifSp /\ ( topGen ` ran (,) ) e. Haus ) -> ( topGen ` ran (,) ) e. Reg ) |
64 |
62 2 63
|
mp2an |
|- ( topGen ` ran (,) ) e. Reg |
65 |
64
|
a1i |
|- ( T. -> ( topGen ` ran (,) ) e. Reg ) |
66 |
|
resabs1 |
|- ( QQ C_ RR -> ( ( _I |` RR ) |` QQ ) = ( _I |` QQ ) ) |
67 |
19 66
|
ax-mp |
|- ( ( _I |` RR ) |` QQ ) = ( _I |` QQ ) |
68 |
1
|
cnrest |
|- ( ( ( _I |` RR ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) /\ QQ C_ RR ) -> ( ( _I |` RR ) |` QQ ) e. ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( topGen ` ran (,) ) ) ) |
69 |
13 19 68
|
mp2an |
|- ( ( _I |` RR ) |` QQ ) e. ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( topGen ` ran (,) ) ) |
70 |
67 69
|
eqeltrri |
|- ( _I |` QQ ) e. ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( topGen ` ran (,) ) ) |
71 |
70
|
a1i |
|- ( T. -> ( _I |` QQ ) e. ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( topGen ` ran (,) ) ) ) |
72 |
1 1 15 3 22 23 25 59 65 71
|
cnextfres1 |
|- ( T. -> ( ( ( ( topGen ` ran (,) ) CnExt ( topGen ` ran (,) ) ) ` ( _I |` QQ ) ) |` QQ ) = ( _I |` QQ ) ) |
73 |
72
|
mptru |
|- ( ( ( ( topGen ` ran (,) ) CnExt ( topGen ` ran (,) ) ) ` ( _I |` QQ ) ) |` QQ ) = ( _I |` QQ ) |
74 |
|
recms |
|- RRfld e. CMetSp |
75 |
74
|
elexi |
|- RRfld e. _V |
76 |
5 6
|
rrhval |
|- ( RRfld e. _V -> ( RRHom ` RRfld ) = ( ( ( topGen ` ran (,) ) CnExt ( topGen ` ran (,) ) ) ` ( QQHom ` RRfld ) ) ) |
77 |
75 76
|
ax-mp |
|- ( RRHom ` RRfld ) = ( ( ( topGen ` ran (,) ) CnExt ( topGen ` ran (,) ) ) ` ( QQHom ` RRfld ) ) |
78 |
|
qqhre |
|- ( QQHom ` RRfld ) = ( _I |` QQ ) |
79 |
78
|
fveq2i |
|- ( ( ( topGen ` ran (,) ) CnExt ( topGen ` ran (,) ) ) ` ( QQHom ` RRfld ) ) = ( ( ( topGen ` ran (,) ) CnExt ( topGen ` ran (,) ) ) ` ( _I |` QQ ) ) |
80 |
77 79
|
eqtri |
|- ( RRHom ` RRfld ) = ( ( ( topGen ` ran (,) ) CnExt ( topGen ` ran (,) ) ) ` ( _I |` QQ ) ) |
81 |
80
|
reseq1i |
|- ( ( RRHom ` RRfld ) |` QQ ) = ( ( ( ( topGen ` ran (,) ) CnExt ( topGen ` ran (,) ) ) ` ( _I |` QQ ) ) |` QQ ) |
82 |
73 81 67
|
3eqtr4i |
|- ( ( RRHom ` RRfld ) |` QQ ) = ( ( _I |` RR ) |` QQ ) |
83 |
82
|
a1i |
|- ( T. -> ( ( RRHom ` RRfld ) |` QQ ) = ( ( _I |` RR ) |` QQ ) ) |
84 |
1 3 8 14 83 23 25
|
hauseqcn |
|- ( T. -> ( RRHom ` RRfld ) = ( _I |` RR ) ) |
85 |
84
|
mptru |
|- ( RRHom ` RRfld ) = ( _I |` RR ) |