Step |
Hyp |
Ref |
Expression |
1 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
2 |
1
|
simpri |
|- RRfld e. DivRing |
3 |
|
drngring |
|- ( RRfld e. DivRing -> RRfld e. Ring ) |
4 |
|
f1oi |
|- ( _I |` ZZ ) : ZZ -1-1-onto-> ZZ |
5 |
|
f1of1 |
|- ( ( _I |` ZZ ) : ZZ -1-1-onto-> ZZ -> ( _I |` ZZ ) : ZZ -1-1-> ZZ ) |
6 |
4 5
|
ax-mp |
|- ( _I |` ZZ ) : ZZ -1-1-> ZZ |
7 |
|
zssre |
|- ZZ C_ RR |
8 |
|
f1ss |
|- ( ( ( _I |` ZZ ) : ZZ -1-1-> ZZ /\ ZZ C_ RR ) -> ( _I |` ZZ ) : ZZ -1-1-> RR ) |
9 |
6 7 8
|
mp2an |
|- ( _I |` ZZ ) : ZZ -1-1-> RR |
10 |
|
zrhre |
|- ( ZRHom ` RRfld ) = ( _I |` ZZ ) |
11 |
|
f1eq1 |
|- ( ( ZRHom ` RRfld ) = ( _I |` ZZ ) -> ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR <-> ( _I |` ZZ ) : ZZ -1-1-> RR ) ) |
12 |
10 11
|
ax-mp |
|- ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR <-> ( _I |` ZZ ) : ZZ -1-1-> RR ) |
13 |
9 12
|
mpbir |
|- ( ZRHom ` RRfld ) : ZZ -1-1-> RR |
14 |
|
rebase |
|- RR = ( Base ` RRfld ) |
15 |
|
eqid |
|- ( ZRHom ` RRfld ) = ( ZRHom ` RRfld ) |
16 |
|
re0g |
|- 0 = ( 0g ` RRfld ) |
17 |
14 15 16
|
zrhchr |
|- ( RRfld e. Ring -> ( ( chr ` RRfld ) = 0 <-> ( ZRHom ` RRfld ) : ZZ -1-1-> RR ) ) |
18 |
13 17
|
mpbiri |
|- ( RRfld e. Ring -> ( chr ` RRfld ) = 0 ) |
19 |
2 3 18
|
mp2b |
|- ( chr ` RRfld ) = 0 |
20 |
|
eqid |
|- ( /r ` RRfld ) = ( /r ` RRfld ) |
21 |
14 20 15
|
qqhvval |
|- ( ( ( RRfld e. DivRing /\ ( chr ` RRfld ) = 0 ) /\ q e. QQ ) -> ( ( QQHom ` RRfld ) ` q ) = ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) ( /r ` RRfld ) ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) ) ) |
22 |
2 19 21
|
mpanl12 |
|- ( q e. QQ -> ( ( QQHom ` RRfld ) ` q ) = ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) ( /r ` RRfld ) ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) ) ) |
23 |
|
f1f |
|- ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR -> ( ZRHom ` RRfld ) : ZZ --> RR ) |
24 |
13 23
|
ax-mp |
|- ( ZRHom ` RRfld ) : ZZ --> RR |
25 |
24
|
a1i |
|- ( q e. QQ -> ( ZRHom ` RRfld ) : ZZ --> RR ) |
26 |
|
qnumcl |
|- ( q e. QQ -> ( numer ` q ) e. ZZ ) |
27 |
25 26
|
ffvelrnd |
|- ( q e. QQ -> ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) e. RR ) |
28 |
|
qdencl |
|- ( q e. QQ -> ( denom ` q ) e. NN ) |
29 |
28
|
nnzd |
|- ( q e. QQ -> ( denom ` q ) e. ZZ ) |
30 |
25 29
|
ffvelrnd |
|- ( q e. QQ -> ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) e. RR ) |
31 |
29
|
anim1i |
|- ( ( q e. QQ /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) -> ( ( denom ` q ) e. ZZ /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) ) |
32 |
14 15 16
|
zrhf1ker |
|- ( RRfld e. Ring -> ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR <-> ( `' ( ZRHom ` RRfld ) " { 0 } ) = { 0 } ) ) |
33 |
2 3 32
|
mp2b |
|- ( ( ZRHom ` RRfld ) : ZZ -1-1-> RR <-> ( `' ( ZRHom ` RRfld ) " { 0 } ) = { 0 } ) |
34 |
13 33
|
mpbi |
|- ( `' ( ZRHom ` RRfld ) " { 0 } ) = { 0 } |
35 |
34
|
eleq2i |
|- ( ( denom ` q ) e. ( `' ( ZRHom ` RRfld ) " { 0 } ) <-> ( denom ` q ) e. { 0 } ) |
36 |
|
ffn |
|- ( ( ZRHom ` RRfld ) : ZZ --> RR -> ( ZRHom ` RRfld ) Fn ZZ ) |
37 |
|
fniniseg |
|- ( ( ZRHom ` RRfld ) Fn ZZ -> ( ( denom ` q ) e. ( `' ( ZRHom ` RRfld ) " { 0 } ) <-> ( ( denom ` q ) e. ZZ /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) ) ) |
38 |
24 36 37
|
mp2b |
|- ( ( denom ` q ) e. ( `' ( ZRHom ` RRfld ) " { 0 } ) <-> ( ( denom ` q ) e. ZZ /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) ) |
39 |
|
fvex |
|- ( denom ` q ) e. _V |
40 |
39
|
elsn |
|- ( ( denom ` q ) e. { 0 } <-> ( denom ` q ) = 0 ) |
41 |
35 38 40
|
3bitr3ri |
|- ( ( denom ` q ) = 0 <-> ( ( denom ` q ) e. ZZ /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) ) |
42 |
31 41
|
sylibr |
|- ( ( q e. QQ /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) -> ( denom ` q ) = 0 ) |
43 |
28
|
nnne0d |
|- ( q e. QQ -> ( denom ` q ) =/= 0 ) |
44 |
43
|
adantr |
|- ( ( q e. QQ /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) -> ( denom ` q ) =/= 0 ) |
45 |
44
|
neneqd |
|- ( ( q e. QQ /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) -> -. ( denom ` q ) = 0 ) |
46 |
42 45
|
pm2.65da |
|- ( q e. QQ -> -. ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = 0 ) |
47 |
46
|
neqned |
|- ( q e. QQ -> ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) =/= 0 ) |
48 |
|
redvr |
|- ( ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) e. RR /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) e. RR /\ ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) =/= 0 ) -> ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) ( /r ` RRfld ) ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) ) = ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) / ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) ) ) |
49 |
27 30 47 48
|
syl3anc |
|- ( q e. QQ -> ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) ( /r ` RRfld ) ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) ) = ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) / ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) ) ) |
50 |
10
|
fveq1i |
|- ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) = ( ( _I |` ZZ ) ` ( numer ` q ) ) |
51 |
|
fvresi |
|- ( ( numer ` q ) e. ZZ -> ( ( _I |` ZZ ) ` ( numer ` q ) ) = ( numer ` q ) ) |
52 |
50 51
|
syl5eq |
|- ( ( numer ` q ) e. ZZ -> ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) = ( numer ` q ) ) |
53 |
26 52
|
syl |
|- ( q e. QQ -> ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) = ( numer ` q ) ) |
54 |
10
|
fveq1i |
|- ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = ( ( _I |` ZZ ) ` ( denom ` q ) ) |
55 |
|
fvresi |
|- ( ( denom ` q ) e. ZZ -> ( ( _I |` ZZ ) ` ( denom ` q ) ) = ( denom ` q ) ) |
56 |
54 55
|
syl5eq |
|- ( ( denom ` q ) e. ZZ -> ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = ( denom ` q ) ) |
57 |
29 56
|
syl |
|- ( q e. QQ -> ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) = ( denom ` q ) ) |
58 |
53 57
|
oveq12d |
|- ( q e. QQ -> ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) / ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) ) = ( ( numer ` q ) / ( denom ` q ) ) ) |
59 |
|
qeqnumdivden |
|- ( q e. QQ -> q = ( ( numer ` q ) / ( denom ` q ) ) ) |
60 |
58 59
|
eqtr4d |
|- ( q e. QQ -> ( ( ( ZRHom ` RRfld ) ` ( numer ` q ) ) / ( ( ZRHom ` RRfld ) ` ( denom ` q ) ) ) = q ) |
61 |
22 49 60
|
3eqtrd |
|- ( q e. QQ -> ( ( QQHom ` RRfld ) ` q ) = q ) |
62 |
61
|
mpteq2ia |
|- ( q e. QQ |-> ( ( QQHom ` RRfld ) ` q ) ) = ( q e. QQ |-> q ) |
63 |
14 20 15
|
qqhf |
|- ( ( RRfld e. DivRing /\ ( chr ` RRfld ) = 0 ) -> ( QQHom ` RRfld ) : QQ --> RR ) |
64 |
2 19 63
|
mp2an |
|- ( QQHom ` RRfld ) : QQ --> RR |
65 |
64
|
a1i |
|- ( T. -> ( QQHom ` RRfld ) : QQ --> RR ) |
66 |
65
|
feqmptd |
|- ( T. -> ( QQHom ` RRfld ) = ( q e. QQ |-> ( ( QQHom ` RRfld ) ` q ) ) ) |
67 |
66
|
mptru |
|- ( QQHom ` RRfld ) = ( q e. QQ |-> ( ( QQHom ` RRfld ) ` q ) ) |
68 |
|
mptresid |
|- ( _I |` QQ ) = ( q e. QQ |-> q ) |
69 |
62 67 68
|
3eqtr4i |
|- ( QQHom ` RRfld ) = ( _I |` QQ ) |