Step |
Hyp |
Ref |
Expression |
1 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
2 |
1
|
simpri |
⊢ ℝfld ∈ DivRing |
3 |
|
drngring |
⊢ ( ℝfld ∈ DivRing → ℝfld ∈ Ring ) |
4 |
|
f1oi |
⊢ ( I ↾ ℤ ) : ℤ –1-1-onto→ ℤ |
5 |
|
f1of1 |
⊢ ( ( I ↾ ℤ ) : ℤ –1-1-onto→ ℤ → ( I ↾ ℤ ) : ℤ –1-1→ ℤ ) |
6 |
4 5
|
ax-mp |
⊢ ( I ↾ ℤ ) : ℤ –1-1→ ℤ |
7 |
|
zssre |
⊢ ℤ ⊆ ℝ |
8 |
|
f1ss |
⊢ ( ( ( I ↾ ℤ ) : ℤ –1-1→ ℤ ∧ ℤ ⊆ ℝ ) → ( I ↾ ℤ ) : ℤ –1-1→ ℝ ) |
9 |
6 7 8
|
mp2an |
⊢ ( I ↾ ℤ ) : ℤ –1-1→ ℝ |
10 |
|
zrhre |
⊢ ( ℤRHom ‘ ℝfld ) = ( I ↾ ℤ ) |
11 |
|
f1eq1 |
⊢ ( ( ℤRHom ‘ ℝfld ) = ( I ↾ ℤ ) → ( ( ℤRHom ‘ ℝfld ) : ℤ –1-1→ ℝ ↔ ( I ↾ ℤ ) : ℤ –1-1→ ℝ ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ( ℤRHom ‘ ℝfld ) : ℤ –1-1→ ℝ ↔ ( I ↾ ℤ ) : ℤ –1-1→ ℝ ) |
13 |
9 12
|
mpbir |
⊢ ( ℤRHom ‘ ℝfld ) : ℤ –1-1→ ℝ |
14 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
15 |
|
eqid |
⊢ ( ℤRHom ‘ ℝfld ) = ( ℤRHom ‘ ℝfld ) |
16 |
|
re0g |
⊢ 0 = ( 0g ‘ ℝfld ) |
17 |
14 15 16
|
zrhchr |
⊢ ( ℝfld ∈ Ring → ( ( chr ‘ ℝfld ) = 0 ↔ ( ℤRHom ‘ ℝfld ) : ℤ –1-1→ ℝ ) ) |
18 |
13 17
|
mpbiri |
⊢ ( ℝfld ∈ Ring → ( chr ‘ ℝfld ) = 0 ) |
19 |
2 3 18
|
mp2b |
⊢ ( chr ‘ ℝfld ) = 0 |
20 |
|
eqid |
⊢ ( /r ‘ ℝfld ) = ( /r ‘ ℝfld ) |
21 |
14 20 15
|
qqhvval |
⊢ ( ( ( ℝfld ∈ DivRing ∧ ( chr ‘ ℝfld ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( ( ℚHom ‘ ℝfld ) ‘ 𝑞 ) = ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) ( /r ‘ ℝfld ) ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ) ) |
22 |
2 19 21
|
mpanl12 |
⊢ ( 𝑞 ∈ ℚ → ( ( ℚHom ‘ ℝfld ) ‘ 𝑞 ) = ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) ( /r ‘ ℝfld ) ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ) ) |
23 |
|
f1f |
⊢ ( ( ℤRHom ‘ ℝfld ) : ℤ –1-1→ ℝ → ( ℤRHom ‘ ℝfld ) : ℤ ⟶ ℝ ) |
24 |
13 23
|
ax-mp |
⊢ ( ℤRHom ‘ ℝfld ) : ℤ ⟶ ℝ |
25 |
24
|
a1i |
⊢ ( 𝑞 ∈ ℚ → ( ℤRHom ‘ ℝfld ) : ℤ ⟶ ℝ ) |
26 |
|
qnumcl |
⊢ ( 𝑞 ∈ ℚ → ( numer ‘ 𝑞 ) ∈ ℤ ) |
27 |
25 26
|
ffvelrnd |
⊢ ( 𝑞 ∈ ℚ → ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) ∈ ℝ ) |
28 |
|
qdencl |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ℕ ) |
29 |
28
|
nnzd |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ℤ ) |
30 |
25 29
|
ffvelrnd |
⊢ ( 𝑞 ∈ ℚ → ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ∈ ℝ ) |
31 |
29
|
anim1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) → ( ( denom ‘ 𝑞 ) ∈ ℤ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) ) |
32 |
14 15 16
|
zrhf1ker |
⊢ ( ℝfld ∈ Ring → ( ( ℤRHom ‘ ℝfld ) : ℤ –1-1→ ℝ ↔ ( ◡ ( ℤRHom ‘ ℝfld ) “ { 0 } ) = { 0 } ) ) |
33 |
2 3 32
|
mp2b |
⊢ ( ( ℤRHom ‘ ℝfld ) : ℤ –1-1→ ℝ ↔ ( ◡ ( ℤRHom ‘ ℝfld ) “ { 0 } ) = { 0 } ) |
34 |
13 33
|
mpbi |
⊢ ( ◡ ( ℤRHom ‘ ℝfld ) “ { 0 } ) = { 0 } |
35 |
34
|
eleq2i |
⊢ ( ( denom ‘ 𝑞 ) ∈ ( ◡ ( ℤRHom ‘ ℝfld ) “ { 0 } ) ↔ ( denom ‘ 𝑞 ) ∈ { 0 } ) |
36 |
|
ffn |
⊢ ( ( ℤRHom ‘ ℝfld ) : ℤ ⟶ ℝ → ( ℤRHom ‘ ℝfld ) Fn ℤ ) |
37 |
|
fniniseg |
⊢ ( ( ℤRHom ‘ ℝfld ) Fn ℤ → ( ( denom ‘ 𝑞 ) ∈ ( ◡ ( ℤRHom ‘ ℝfld ) “ { 0 } ) ↔ ( ( denom ‘ 𝑞 ) ∈ ℤ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) ) ) |
38 |
24 36 37
|
mp2b |
⊢ ( ( denom ‘ 𝑞 ) ∈ ( ◡ ( ℤRHom ‘ ℝfld ) “ { 0 } ) ↔ ( ( denom ‘ 𝑞 ) ∈ ℤ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) ) |
39 |
|
fvex |
⊢ ( denom ‘ 𝑞 ) ∈ V |
40 |
39
|
elsn |
⊢ ( ( denom ‘ 𝑞 ) ∈ { 0 } ↔ ( denom ‘ 𝑞 ) = 0 ) |
41 |
35 38 40
|
3bitr3ri |
⊢ ( ( denom ‘ 𝑞 ) = 0 ↔ ( ( denom ‘ 𝑞 ) ∈ ℤ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) ) |
42 |
31 41
|
sylibr |
⊢ ( ( 𝑞 ∈ ℚ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) → ( denom ‘ 𝑞 ) = 0 ) |
43 |
28
|
nnne0d |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ≠ 0 ) |
44 |
43
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) → ( denom ‘ 𝑞 ) ≠ 0 ) |
45 |
44
|
neneqd |
⊢ ( ( 𝑞 ∈ ℚ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) → ¬ ( denom ‘ 𝑞 ) = 0 ) |
46 |
42 45
|
pm2.65da |
⊢ ( 𝑞 ∈ ℚ → ¬ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = 0 ) |
47 |
46
|
neqned |
⊢ ( 𝑞 ∈ ℚ → ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ≠ 0 ) |
48 |
|
redvr |
⊢ ( ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) ∈ ℝ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ∈ ℝ ∧ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ≠ 0 ) → ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) ( /r ‘ ℝfld ) ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ) = ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) / ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ) ) |
49 |
27 30 47 48
|
syl3anc |
⊢ ( 𝑞 ∈ ℚ → ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) ( /r ‘ ℝfld ) ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ) = ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) / ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ) ) |
50 |
10
|
fveq1i |
⊢ ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) = ( ( I ↾ ℤ ) ‘ ( numer ‘ 𝑞 ) ) |
51 |
|
fvresi |
⊢ ( ( numer ‘ 𝑞 ) ∈ ℤ → ( ( I ↾ ℤ ) ‘ ( numer ‘ 𝑞 ) ) = ( numer ‘ 𝑞 ) ) |
52 |
50 51
|
syl5eq |
⊢ ( ( numer ‘ 𝑞 ) ∈ ℤ → ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) = ( numer ‘ 𝑞 ) ) |
53 |
26 52
|
syl |
⊢ ( 𝑞 ∈ ℚ → ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) = ( numer ‘ 𝑞 ) ) |
54 |
10
|
fveq1i |
⊢ ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = ( ( I ↾ ℤ ) ‘ ( denom ‘ 𝑞 ) ) |
55 |
|
fvresi |
⊢ ( ( denom ‘ 𝑞 ) ∈ ℤ → ( ( I ↾ ℤ ) ‘ ( denom ‘ 𝑞 ) ) = ( denom ‘ 𝑞 ) ) |
56 |
54 55
|
syl5eq |
⊢ ( ( denom ‘ 𝑞 ) ∈ ℤ → ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = ( denom ‘ 𝑞 ) ) |
57 |
29 56
|
syl |
⊢ ( 𝑞 ∈ ℚ → ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) = ( denom ‘ 𝑞 ) ) |
58 |
53 57
|
oveq12d |
⊢ ( 𝑞 ∈ ℚ → ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) / ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ) = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
59 |
|
qeqnumdivden |
⊢ ( 𝑞 ∈ ℚ → 𝑞 = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
60 |
58 59
|
eqtr4d |
⊢ ( 𝑞 ∈ ℚ → ( ( ( ℤRHom ‘ ℝfld ) ‘ ( numer ‘ 𝑞 ) ) / ( ( ℤRHom ‘ ℝfld ) ‘ ( denom ‘ 𝑞 ) ) ) = 𝑞 ) |
61 |
22 49 60
|
3eqtrd |
⊢ ( 𝑞 ∈ ℚ → ( ( ℚHom ‘ ℝfld ) ‘ 𝑞 ) = 𝑞 ) |
62 |
61
|
mpteq2ia |
⊢ ( 𝑞 ∈ ℚ ↦ ( ( ℚHom ‘ ℝfld ) ‘ 𝑞 ) ) = ( 𝑞 ∈ ℚ ↦ 𝑞 ) |
63 |
14 20 15
|
qqhf |
⊢ ( ( ℝfld ∈ DivRing ∧ ( chr ‘ ℝfld ) = 0 ) → ( ℚHom ‘ ℝfld ) : ℚ ⟶ ℝ ) |
64 |
2 19 63
|
mp2an |
⊢ ( ℚHom ‘ ℝfld ) : ℚ ⟶ ℝ |
65 |
64
|
a1i |
⊢ ( ⊤ → ( ℚHom ‘ ℝfld ) : ℚ ⟶ ℝ ) |
66 |
65
|
feqmptd |
⊢ ( ⊤ → ( ℚHom ‘ ℝfld ) = ( 𝑞 ∈ ℚ ↦ ( ( ℚHom ‘ ℝfld ) ‘ 𝑞 ) ) ) |
67 |
66
|
mptru |
⊢ ( ℚHom ‘ ℝfld ) = ( 𝑞 ∈ ℚ ↦ ( ( ℚHom ‘ ℝfld ) ‘ 𝑞 ) ) |
68 |
|
mptresid |
⊢ ( I ↾ ℚ ) = ( 𝑞 ∈ ℚ ↦ 𝑞 ) |
69 |
62 67 68
|
3eqtr4i |
⊢ ( ℚHom ‘ ℝfld ) = ( I ↾ ℚ ) |