Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
|
remulg |
⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℝ ) → ( 𝑛 ( .g ‘ ℝfld ) 1 ) = ( 𝑛 · 1 ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℝfld ) 1 ) = ( 𝑛 · 1 ) ) |
4 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
5 |
|
ax-1rid |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 · 1 ) = 𝑛 ) |
6 |
4 5
|
syl |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · 1 ) = 𝑛 ) |
7 |
3 6
|
eqtrd |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℝfld ) 1 ) = 𝑛 ) |
8 |
7
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ℝfld ) 1 ) ) = ( 𝑛 ∈ ℤ ↦ 𝑛 ) |
9 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
10 |
9
|
simpri |
⊢ ℝfld ∈ DivRing |
11 |
|
drngring |
⊢ ( ℝfld ∈ DivRing → ℝfld ∈ Ring ) |
12 |
|
eqid |
⊢ ( ℤRHom ‘ ℝfld ) = ( ℤRHom ‘ ℝfld ) |
13 |
|
eqid |
⊢ ( .g ‘ ℝfld ) = ( .g ‘ ℝfld ) |
14 |
|
re1r |
⊢ 1 = ( 1r ‘ ℝfld ) |
15 |
12 13 14
|
zrhval2 |
⊢ ( ℝfld ∈ Ring → ( ℤRHom ‘ ℝfld ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ℝfld ) 1 ) ) ) |
16 |
10 11 15
|
mp2b |
⊢ ( ℤRHom ‘ ℝfld ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ℝfld ) 1 ) ) |
17 |
|
mptresid |
⊢ ( I ↾ ℤ ) = ( 𝑛 ∈ ℤ ↦ 𝑛 ) |
18 |
8 16 17
|
3eqtr4i |
⊢ ( ℤRHom ‘ ℝfld ) = ( I ↾ ℤ ) |