Metamath Proof Explorer


Theorem zrhre

Description: The ZRHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017)

Ref Expression
Assertion zrhre ( ℤRHom ‘ ℝfld ) = ( I ↾ ℤ )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 remulg ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℝ ) → ( 𝑛 ( .g ‘ ℝfld ) 1 ) = ( 𝑛 · 1 ) )
3 1 2 mpan2 ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℝfld ) 1 ) = ( 𝑛 · 1 ) )
4 zre ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ )
5 ax-1rid ( 𝑛 ∈ ℝ → ( 𝑛 · 1 ) = 𝑛 )
6 4 5 syl ( 𝑛 ∈ ℤ → ( 𝑛 · 1 ) = 𝑛 )
7 3 6 eqtrd ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℝfld ) 1 ) = 𝑛 )
8 7 mpteq2ia ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ℝfld ) 1 ) ) = ( 𝑛 ∈ ℤ ↦ 𝑛 )
9 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
10 9 simpri fld ∈ DivRing
11 drngring ( ℝfld ∈ DivRing → ℝfld ∈ Ring )
12 eqid ( ℤRHom ‘ ℝfld ) = ( ℤRHom ‘ ℝfld )
13 eqid ( .g ‘ ℝfld ) = ( .g ‘ ℝfld )
14 re1r 1 = ( 1r ‘ ℝfld )
15 12 13 14 zrhval2 ( ℝfld ∈ Ring → ( ℤRHom ‘ ℝfld ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ℝfld ) 1 ) ) )
16 10 11 15 mp2b ( ℤRHom ‘ ℝfld ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ ℝfld ) 1 ) )
17 mptresid ( I ↾ ℤ ) = ( 𝑛 ∈ ℤ ↦ 𝑛 )
18 8 16 17 3eqtr4i ( ℤRHom ‘ ℝfld ) = ( I ↾ ℤ )