Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|- 1 e. RR |
2 |
|
remulg |
|- ( ( n e. ZZ /\ 1 e. RR ) -> ( n ( .g ` RRfld ) 1 ) = ( n x. 1 ) ) |
3 |
1 2
|
mpan2 |
|- ( n e. ZZ -> ( n ( .g ` RRfld ) 1 ) = ( n x. 1 ) ) |
4 |
|
zre |
|- ( n e. ZZ -> n e. RR ) |
5 |
|
ax-1rid |
|- ( n e. RR -> ( n x. 1 ) = n ) |
6 |
4 5
|
syl |
|- ( n e. ZZ -> ( n x. 1 ) = n ) |
7 |
3 6
|
eqtrd |
|- ( n e. ZZ -> ( n ( .g ` RRfld ) 1 ) = n ) |
8 |
7
|
mpteq2ia |
|- ( n e. ZZ |-> ( n ( .g ` RRfld ) 1 ) ) = ( n e. ZZ |-> n ) |
9 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
10 |
9
|
simpri |
|- RRfld e. DivRing |
11 |
|
drngring |
|- ( RRfld e. DivRing -> RRfld e. Ring ) |
12 |
|
eqid |
|- ( ZRHom ` RRfld ) = ( ZRHom ` RRfld ) |
13 |
|
eqid |
|- ( .g ` RRfld ) = ( .g ` RRfld ) |
14 |
|
re1r |
|- 1 = ( 1r ` RRfld ) |
15 |
12 13 14
|
zrhval2 |
|- ( RRfld e. Ring -> ( ZRHom ` RRfld ) = ( n e. ZZ |-> ( n ( .g ` RRfld ) 1 ) ) ) |
16 |
10 11 15
|
mp2b |
|- ( ZRHom ` RRfld ) = ( n e. ZZ |-> ( n ( .g ` RRfld ) 1 ) ) |
17 |
|
mptresid |
|- ( _I |` ZZ ) = ( n e. ZZ |-> n ) |
18 |
8 16 17
|
3eqtr4i |
|- ( ZRHom ` RRfld ) = ( _I |` ZZ ) |