Metamath Proof Explorer


Theorem qqhre

Description: The QQHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017)

Ref Expression
Assertion qqhre ℚHom fld = I

Proof

Step Hyp Ref Expression
1 resubdrg SubRing fld fld DivRing
2 1 simpri fld DivRing
3 drngring fld DivRing fld Ring
4 f1oi I : 1-1 onto
5 f1of1 I : 1-1 onto I : 1-1
6 4 5 ax-mp I : 1-1
7 zssre
8 f1ss I : 1-1 I : 1-1
9 6 7 8 mp2an I : 1-1
10 zrhre ℤRHom fld = I
11 f1eq1 ℤRHom fld = I ℤRHom fld : 1-1 I : 1-1
12 10 11 ax-mp ℤRHom fld : 1-1 I : 1-1
13 9 12 mpbir ℤRHom fld : 1-1
14 rebase = Base fld
15 eqid ℤRHom fld = ℤRHom fld
16 re0g 0 = 0 fld
17 14 15 16 zrhchr fld Ring chr fld = 0 ℤRHom fld : 1-1
18 13 17 mpbiri fld Ring chr fld = 0
19 2 3 18 mp2b chr fld = 0
20 eqid / r fld = / r fld
21 14 20 15 qqhvval fld DivRing chr fld = 0 q ℚHom fld q = ℤRHom fld numer q / r fld ℤRHom fld denom q
22 2 19 21 mpanl12 q ℚHom fld q = ℤRHom fld numer q / r fld ℤRHom fld denom q
23 f1f ℤRHom fld : 1-1 ℤRHom fld :
24 13 23 ax-mp ℤRHom fld :
25 24 a1i q ℤRHom fld :
26 qnumcl q numer q
27 25 26 ffvelrnd q ℤRHom fld numer q
28 qdencl q denom q
29 28 nnzd q denom q
30 25 29 ffvelrnd q ℤRHom fld denom q
31 29 anim1i q ℤRHom fld denom q = 0 denom q ℤRHom fld denom q = 0
32 14 15 16 zrhf1ker fld Ring ℤRHom fld : 1-1 ℤRHom fld -1 0 = 0
33 2 3 32 mp2b ℤRHom fld : 1-1 ℤRHom fld -1 0 = 0
34 13 33 mpbi ℤRHom fld -1 0 = 0
35 34 eleq2i denom q ℤRHom fld -1 0 denom q 0
36 ffn ℤRHom fld : ℤRHom fld Fn
37 fniniseg ℤRHom fld Fn denom q ℤRHom fld -1 0 denom q ℤRHom fld denom q = 0
38 24 36 37 mp2b denom q ℤRHom fld -1 0 denom q ℤRHom fld denom q = 0
39 fvex denom q V
40 39 elsn denom q 0 denom q = 0
41 35 38 40 3bitr3ri denom q = 0 denom q ℤRHom fld denom q = 0
42 31 41 sylibr q ℤRHom fld denom q = 0 denom q = 0
43 28 nnne0d q denom q 0
44 43 adantr q ℤRHom fld denom q = 0 denom q 0
45 44 neneqd q ℤRHom fld denom q = 0 ¬ denom q = 0
46 42 45 pm2.65da q ¬ ℤRHom fld denom q = 0
47 46 neqned q ℤRHom fld denom q 0
48 redvr ℤRHom fld numer q ℤRHom fld denom q ℤRHom fld denom q 0 ℤRHom fld numer q / r fld ℤRHom fld denom q = ℤRHom fld numer q ℤRHom fld denom q
49 27 30 47 48 syl3anc q ℤRHom fld numer q / r fld ℤRHom fld denom q = ℤRHom fld numer q ℤRHom fld denom q
50 10 fveq1i ℤRHom fld numer q = I numer q
51 fvresi numer q I numer q = numer q
52 50 51 eqtrid numer q ℤRHom fld numer q = numer q
53 26 52 syl q ℤRHom fld numer q = numer q
54 10 fveq1i ℤRHom fld denom q = I denom q
55 fvresi denom q I denom q = denom q
56 54 55 eqtrid denom q ℤRHom fld denom q = denom q
57 29 56 syl q ℤRHom fld denom q = denom q
58 53 57 oveq12d q ℤRHom fld numer q ℤRHom fld denom q = numer q denom q
59 qeqnumdivden q q = numer q denom q
60 58 59 eqtr4d q ℤRHom fld numer q ℤRHom fld denom q = q
61 22 49 60 3eqtrd q ℚHom fld q = q
62 61 mpteq2ia q ℚHom fld q = q q
63 14 20 15 qqhf fld DivRing chr fld = 0 ℚHom fld :
64 2 19 63 mp2an ℚHom fld :
65 64 a1i ℚHom fld :
66 65 feqmptd ℚHom fld = q ℚHom fld q
67 66 mptru ℚHom fld = q ℚHom fld q
68 mptresid I = q q
69 62 67 68 3eqtr4i ℚHom fld = I