| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 2 |  | rehaus | ⊢ ( topGen ‘ ran  (,) )  ∈  Haus | 
						
							| 3 | 2 | a1i | ⊢ ( ⊤  →  ( topGen ‘ ran  (,) )  ∈  Haus ) | 
						
							| 4 |  | rerrext | ⊢ ℝfld  ∈   ℝExt | 
						
							| 5 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 6 |  | retopn | ⊢ ( topGen ‘ ran  (,) )  =  ( TopOpen ‘ ℝfld ) | 
						
							| 7 | 5 6 | rrhcne | ⊢ ( ℝfld  ∈   ℝExt   →  ( ℝHom ‘ ℝfld )  ∈  ( ( topGen ‘ ran  (,) )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 8 | 4 7 | mp1i | ⊢ ( ⊤  →  ( ℝHom ‘ ℝfld )  ∈  ( ( topGen ‘ ran  (,) )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 9 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 10 | 1 | toptopon | ⊢ ( ( topGen ‘ ran  (,) )  ∈  Top  ↔  ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) ) | 
						
							| 11 | 9 10 | mpbi | ⊢ ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) | 
						
							| 12 |  | idcn | ⊢ ( ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ )  →  (  I   ↾  ℝ )  ∈  ( ( topGen ‘ ran  (,) )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ (  I   ↾  ℝ )  ∈  ( ( topGen ‘ ran  (,) )  Cn  ( topGen ‘ ran  (,) ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( ⊤  →  (  I   ↾  ℝ )  ∈  ( ( topGen ‘ ran  (,) )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 15 | 9 | a1i | ⊢ ( ⊤  →  ( topGen ‘ ran  (,) )  ∈  Top ) | 
						
							| 16 |  | f1oi | ⊢ (  I   ↾  ℚ ) : ℚ –1-1-onto→ ℚ | 
						
							| 17 |  | f1of | ⊢ ( (  I   ↾  ℚ ) : ℚ –1-1-onto→ ℚ  →  (  I   ↾  ℚ ) : ℚ ⟶ ℚ ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ (  I   ↾  ℚ ) : ℚ ⟶ ℚ | 
						
							| 19 |  | qssre | ⊢ ℚ  ⊆  ℝ | 
						
							| 20 |  | fss | ⊢ ( ( (  I   ↾  ℚ ) : ℚ ⟶ ℚ  ∧  ℚ  ⊆  ℝ )  →  (  I   ↾  ℚ ) : ℚ ⟶ ℝ ) | 
						
							| 21 | 18 19 20 | mp2an | ⊢ (  I   ↾  ℚ ) : ℚ ⟶ ℝ | 
						
							| 22 | 21 | a1i | ⊢ ( ⊤  →  (  I   ↾  ℚ ) : ℚ ⟶ ℝ ) | 
						
							| 23 | 19 | a1i | ⊢ ( ⊤  →  ℚ  ⊆  ℝ ) | 
						
							| 24 |  | qdensere | ⊢ ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ )  =  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( ⊤  →  ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ )  =  ℝ ) | 
						
							| 26 | 9 | a1i | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑎  ∈  ( topGen ‘ ran  (,) ) )  ∧  𝑥  ∈  𝑎 )  →  ( topGen ‘ ran  (,) )  ∈  Top ) | 
						
							| 27 |  | simplr | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑎  ∈  ( topGen ‘ ran  (,) ) )  ∧  𝑥  ∈  𝑎 )  →  𝑎  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑎  ∈  ( topGen ‘ ran  (,) ) )  ∧  𝑥  ∈  𝑎 )  →  𝑥  ∈  𝑎 ) | 
						
							| 29 |  | opnneip | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  𝑎  ∈  ( topGen ‘ ran  (,) )  ∧  𝑥  ∈  𝑎 )  →  𝑎  ∈  ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } ) ) | 
						
							| 30 | 26 27 28 29 | syl3anc | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑎  ∈  ( topGen ‘ ran  (,) ) )  ∧  𝑥  ∈  𝑎 )  →  𝑎  ∈  ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } ) ) | 
						
							| 31 |  | fvex | ⊢ ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ∈  V | 
						
							| 32 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 33 |  | elrestr | ⊢ ( ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ∈  V  ∧  ℚ  ∈  V  ∧  𝑎  ∈  ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } ) )  →  ( 𝑎  ∩  ℚ )  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) | 
						
							| 34 | 31 32 33 | mp3an12 | ⊢ ( 𝑎  ∈  ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  →  ( 𝑎  ∩  ℚ )  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) | 
						
							| 35 | 30 34 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑎  ∈  ( topGen ‘ ran  (,) ) )  ∧  𝑥  ∈  𝑎 )  →  ( 𝑎  ∩  ℚ )  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) | 
						
							| 36 |  | inss2 | ⊢ ( 𝑎  ∩  ℚ )  ⊆  ℚ | 
						
							| 37 |  | resiima | ⊢ ( ( 𝑎  ∩  ℚ )  ⊆  ℚ  →  ( (  I   ↾  ℚ )  “  ( 𝑎  ∩  ℚ ) )  =  ( 𝑎  ∩  ℚ ) ) | 
						
							| 38 | 36 37 | ax-mp | ⊢ ( (  I   ↾  ℚ )  “  ( 𝑎  ∩  ℚ ) )  =  ( 𝑎  ∩  ℚ ) | 
						
							| 39 |  | inss1 | ⊢ ( 𝑎  ∩  ℚ )  ⊆  𝑎 | 
						
							| 40 | 38 39 | eqsstri | ⊢ ( (  I   ↾  ℚ )  “  ( 𝑎  ∩  ℚ ) )  ⊆  𝑎 | 
						
							| 41 | 40 | a1i | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑎  ∈  ( topGen ‘ ran  (,) ) )  ∧  𝑥  ∈  𝑎 )  →  ( (  I   ↾  ℚ )  “  ( 𝑎  ∩  ℚ ) )  ⊆  𝑎 ) | 
						
							| 42 |  | imaeq2 | ⊢ ( 𝑏  =  ( 𝑎  ∩  ℚ )  →  ( (  I   ↾  ℚ )  “  𝑏 )  =  ( (  I   ↾  ℚ )  “  ( 𝑎  ∩  ℚ ) ) ) | 
						
							| 43 | 42 | sseq1d | ⊢ ( 𝑏  =  ( 𝑎  ∩  ℚ )  →  ( ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎  ↔  ( (  I   ↾  ℚ )  “  ( 𝑎  ∩  ℚ ) )  ⊆  𝑎 ) ) | 
						
							| 44 | 43 | rspcev | ⊢ ( ( ( 𝑎  ∩  ℚ )  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ )  ∧  ( (  I   ↾  ℚ )  “  ( 𝑎  ∩  ℚ ) )  ⊆  𝑎 )  →  ∃ 𝑏  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎 ) | 
						
							| 45 | 35 41 44 | syl2anc | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑎  ∈  ( topGen ‘ ran  (,) ) )  ∧  𝑥  ∈  𝑎 )  →  ∃ 𝑏  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎 ) | 
						
							| 46 | 45 | ex | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑎  ∈  ( topGen ‘ ran  (,) ) )  →  ( 𝑥  ∈  𝑎  →  ∃ 𝑏  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎 ) ) | 
						
							| 47 | 46 | ralrimiva | ⊢ ( 𝑥  ∈  ℝ  →  ∀ 𝑎  ∈  ( topGen ‘ ran  (,) ) ( 𝑥  ∈  𝑎  →  ∃ 𝑏  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎 ) ) | 
						
							| 48 | 47 | ancli | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑎  ∈  ( topGen ‘ ran  (,) ) ( 𝑥  ∈  𝑎  →  ∃ 𝑏  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎 ) ) ) | 
						
							| 49 | 24 | eleq2i | ⊢ ( 𝑥  ∈  ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ )  ↔  𝑥  ∈  ℝ ) | 
						
							| 50 | 49 | biimpri | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ ) ) | 
						
							| 51 |  | trnei | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ )  ∧  ℚ  ⊆  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ )  ↔  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ )  ∈  ( Fil ‘ ℚ ) ) ) | 
						
							| 52 | 11 19 51 | mp3an12 | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ )  ↔  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ )  ∈  ( Fil ‘ ℚ ) ) ) | 
						
							| 53 | 50 52 | mpbid | ⊢ ( 𝑥  ∈  ℝ  →  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ )  ∈  ( Fil ‘ ℚ ) ) | 
						
							| 54 |  | isflf | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ )  ∧  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ )  ∈  ( Fil ‘ ℚ )  ∧  (  I   ↾  ℚ ) : ℚ ⟶ ℝ )  →  ( 𝑥  ∈  ( ( ( topGen ‘ ran  (,) )  fLimf  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) ‘ (  I   ↾  ℚ ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑎  ∈  ( topGen ‘ ran  (,) ) ( 𝑥  ∈  𝑎  →  ∃ 𝑏  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎 ) ) ) ) | 
						
							| 55 | 11 21 54 | mp3an13 | ⊢ ( ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ )  ∈  ( Fil ‘ ℚ )  →  ( 𝑥  ∈  ( ( ( topGen ‘ ran  (,) )  fLimf  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) ‘ (  I   ↾  ℚ ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑎  ∈  ( topGen ‘ ran  (,) ) ( 𝑥  ∈  𝑎  →  ∃ 𝑏  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎 ) ) ) ) | 
						
							| 56 | 53 55 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  ( ( ( topGen ‘ ran  (,) )  fLimf  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) ‘ (  I   ↾  ℚ ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ∀ 𝑎  ∈  ( topGen ‘ ran  (,) ) ( 𝑥  ∈  𝑎  →  ∃ 𝑏  ∈  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ( (  I   ↾  ℚ )  “  𝑏 )  ⊆  𝑎 ) ) ) ) | 
						
							| 57 | 48 56 | mpbird | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ( ( ( topGen ‘ ran  (,) )  fLimf  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) ‘ (  I   ↾  ℚ ) ) ) | 
						
							| 58 | 57 | ne0d | ⊢ ( 𝑥  ∈  ℝ  →  ( ( ( topGen ‘ ran  (,) )  fLimf  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) ‘ (  I   ↾  ℚ ) )  ≠  ∅ ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ )  →  ( ( ( topGen ‘ ran  (,) )  fLimf  ( ( ( nei ‘ ( topGen ‘ ran  (,) ) ) ‘ { 𝑥 } )  ↾t  ℚ ) ) ‘ (  I   ↾  ℚ ) )  ≠  ∅ ) | 
						
							| 60 |  | recusp | ⊢ ℝfld  ∈  CUnifSp | 
						
							| 61 |  | cuspusp | ⊢ ( ℝfld  ∈  CUnifSp  →  ℝfld  ∈  UnifSp ) | 
						
							| 62 | 60 61 | ax-mp | ⊢ ℝfld  ∈  UnifSp | 
						
							| 63 | 6 | uspreg | ⊢ ( ( ℝfld  ∈  UnifSp  ∧  ( topGen ‘ ran  (,) )  ∈  Haus )  →  ( topGen ‘ ran  (,) )  ∈  Reg ) | 
						
							| 64 | 62 2 63 | mp2an | ⊢ ( topGen ‘ ran  (,) )  ∈  Reg | 
						
							| 65 | 64 | a1i | ⊢ ( ⊤  →  ( topGen ‘ ran  (,) )  ∈  Reg ) | 
						
							| 66 |  | resabs1 | ⊢ ( ℚ  ⊆  ℝ  →  ( (  I   ↾  ℝ )  ↾  ℚ )  =  (  I   ↾  ℚ ) ) | 
						
							| 67 | 19 66 | ax-mp | ⊢ ( (  I   ↾  ℝ )  ↾  ℚ )  =  (  I   ↾  ℚ ) | 
						
							| 68 | 1 | cnrest | ⊢ ( ( (  I   ↾  ℝ )  ∈  ( ( topGen ‘ ran  (,) )  Cn  ( topGen ‘ ran  (,) ) )  ∧  ℚ  ⊆  ℝ )  →  ( (  I   ↾  ℝ )  ↾  ℚ )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ℚ )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 69 | 13 19 68 | mp2an | ⊢ ( (  I   ↾  ℝ )  ↾  ℚ )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ℚ )  Cn  ( topGen ‘ ran  (,) ) ) | 
						
							| 70 | 67 69 | eqeltrri | ⊢ (  I   ↾  ℚ )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ℚ )  Cn  ( topGen ‘ ran  (,) ) ) | 
						
							| 71 | 70 | a1i | ⊢ ( ⊤  →  (  I   ↾  ℚ )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ℚ )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 72 | 1 1 15 3 22 23 25 59 65 71 | cnextfres1 | ⊢ ( ⊤  →  ( ( ( ( topGen ‘ ran  (,) ) CnExt ( topGen ‘ ran  (,) ) ) ‘ (  I   ↾  ℚ ) )  ↾  ℚ )  =  (  I   ↾  ℚ ) ) | 
						
							| 73 | 72 | mptru | ⊢ ( ( ( ( topGen ‘ ran  (,) ) CnExt ( topGen ‘ ran  (,) ) ) ‘ (  I   ↾  ℚ ) )  ↾  ℚ )  =  (  I   ↾  ℚ ) | 
						
							| 74 |  | recms | ⊢ ℝfld  ∈  CMetSp | 
						
							| 75 | 74 | elexi | ⊢ ℝfld  ∈  V | 
						
							| 76 | 5 6 | rrhval | ⊢ ( ℝfld  ∈  V  →  ( ℝHom ‘ ℝfld )  =  ( ( ( topGen ‘ ran  (,) ) CnExt ( topGen ‘ ran  (,) ) ) ‘ ( ℚHom ‘ ℝfld ) ) ) | 
						
							| 77 | 75 76 | ax-mp | ⊢ ( ℝHom ‘ ℝfld )  =  ( ( ( topGen ‘ ran  (,) ) CnExt ( topGen ‘ ran  (,) ) ) ‘ ( ℚHom ‘ ℝfld ) ) | 
						
							| 78 |  | qqhre | ⊢ ( ℚHom ‘ ℝfld )  =  (  I   ↾  ℚ ) | 
						
							| 79 | 78 | fveq2i | ⊢ ( ( ( topGen ‘ ran  (,) ) CnExt ( topGen ‘ ran  (,) ) ) ‘ ( ℚHom ‘ ℝfld ) )  =  ( ( ( topGen ‘ ran  (,) ) CnExt ( topGen ‘ ran  (,) ) ) ‘ (  I   ↾  ℚ ) ) | 
						
							| 80 | 77 79 | eqtri | ⊢ ( ℝHom ‘ ℝfld )  =  ( ( ( topGen ‘ ran  (,) ) CnExt ( topGen ‘ ran  (,) ) ) ‘ (  I   ↾  ℚ ) ) | 
						
							| 81 | 80 | reseq1i | ⊢ ( ( ℝHom ‘ ℝfld )  ↾  ℚ )  =  ( ( ( ( topGen ‘ ran  (,) ) CnExt ( topGen ‘ ran  (,) ) ) ‘ (  I   ↾  ℚ ) )  ↾  ℚ ) | 
						
							| 82 | 73 81 67 | 3eqtr4i | ⊢ ( ( ℝHom ‘ ℝfld )  ↾  ℚ )  =  ( (  I   ↾  ℝ )  ↾  ℚ ) | 
						
							| 83 | 82 | a1i | ⊢ ( ⊤  →  ( ( ℝHom ‘ ℝfld )  ↾  ℚ )  =  ( (  I   ↾  ℝ )  ↾  ℚ ) ) | 
						
							| 84 | 1 3 8 14 83 23 25 | hauseqcn | ⊢ ( ⊤  →  ( ℝHom ‘ ℝfld )  =  (  I   ↾  ℝ ) ) | 
						
							| 85 | 84 | mptru | ⊢ ( ℝHom ‘ ℝfld )  =  (  I   ↾  ℝ ) |