Metamath Proof Explorer


Theorem hauseqcn

Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017)

Ref Expression
Hypotheses hauseqcn.x 𝑋 = 𝐽
hauseqcn.k ( 𝜑𝐾 ∈ Haus )
hauseqcn.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
hauseqcn.g ( 𝜑𝐺 ∈ ( 𝐽 Cn 𝐾 ) )
hauseqcn.e ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )
hauseqcn.a ( 𝜑𝐴𝑋 )
hauseqcn.c ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 )
Assertion hauseqcn ( 𝜑𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 hauseqcn.x 𝑋 = 𝐽
2 hauseqcn.k ( 𝜑𝐾 ∈ Haus )
3 hauseqcn.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
4 hauseqcn.g ( 𝜑𝐺 ∈ ( 𝐽 Cn 𝐾 ) )
5 hauseqcn.e ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )
6 hauseqcn.a ( 𝜑𝐴𝑋 )
7 hauseqcn.c ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 )
8 cntop1 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top )
9 3 8 syl ( 𝜑𝐽 ∈ Top )
10 dmin dom ( 𝐹𝐺 ) ⊆ ( dom 𝐹 ∩ dom 𝐺 )
11 eqid 𝐽 = 𝐽
12 eqid 𝐾 = 𝐾
13 11 12 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝐽 𝐾 )
14 fdm ( 𝐹 : 𝐽 𝐾 → dom 𝐹 = 𝐽 )
15 3 13 14 3syl ( 𝜑 → dom 𝐹 = 𝐽 )
16 11 12 cnf ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐺 : 𝐽 𝐾 )
17 fdm ( 𝐺 : 𝐽 𝐾 → dom 𝐺 = 𝐽 )
18 4 16 17 3syl ( 𝜑 → dom 𝐺 = 𝐽 )
19 15 18 ineq12d ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = ( 𝐽 𝐽 ) )
20 inidm ( 𝐽 𝐽 ) = 𝐽
21 19 20 eqtrdi ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = 𝐽 )
22 10 21 sseqtrid ( 𝜑 → dom ( 𝐹𝐺 ) ⊆ 𝐽 )
23 ffn ( 𝐹 : 𝐽 𝐾𝐹 Fn 𝐽 )
24 3 13 23 3syl ( 𝜑𝐹 Fn 𝐽 )
25 ffn ( 𝐺 : 𝐽 𝐾𝐺 Fn 𝐽 )
26 4 16 25 3syl ( 𝜑𝐺 Fn 𝐽 )
27 6 1 sseqtrdi ( 𝜑𝐴 𝐽 )
28 fnreseql ( ( 𝐹 Fn 𝐽𝐺 Fn 𝐽𝐴 𝐽 ) → ( ( 𝐹𝐴 ) = ( 𝐺𝐴 ) ↔ 𝐴 ⊆ dom ( 𝐹𝐺 ) ) )
29 24 26 27 28 syl3anc ( 𝜑 → ( ( 𝐹𝐴 ) = ( 𝐺𝐴 ) ↔ 𝐴 ⊆ dom ( 𝐹𝐺 ) ) )
30 5 29 mpbid ( 𝜑𝐴 ⊆ dom ( 𝐹𝐺 ) )
31 11 clsss ( ( 𝐽 ∈ Top ∧ dom ( 𝐹𝐺 ) ⊆ 𝐽𝐴 ⊆ dom ( 𝐹𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ dom ( 𝐹𝐺 ) ) )
32 9 22 30 31 syl3anc ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ dom ( 𝐹𝐺 ) ) )
33 2 3 4 hauseqlcld ( 𝜑 → dom ( 𝐹𝐺 ) ∈ ( Clsd ‘ 𝐽 ) )
34 cldcls ( dom ( 𝐹𝐺 ) ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ dom ( 𝐹𝐺 ) ) = dom ( 𝐹𝐺 ) )
35 33 34 syl ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ dom ( 𝐹𝐺 ) ) = dom ( 𝐹𝐺 ) )
36 32 7 35 3sstr3d ( 𝜑𝑋 ⊆ dom ( 𝐹𝐺 ) )
37 1 36 eqsstrrid ( 𝜑 𝐽 ⊆ dom ( 𝐹𝐺 ) )
38 fneqeql2 ( ( 𝐹 Fn 𝐽𝐺 Fn 𝐽 ) → ( 𝐹 = 𝐺 𝐽 ⊆ dom ( 𝐹𝐺 ) ) )
39 24 26 38 syl2anc ( 𝜑 → ( 𝐹 = 𝐺 𝐽 ⊆ dom ( 𝐹𝐺 ) ) )
40 37 39 mpbird ( 𝜑𝐹 = 𝐺 )