| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hauseqcn.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | hauseqcn.k | ⊢ ( 𝜑  →  𝐾  ∈  Haus ) | 
						
							| 3 |  | hauseqcn.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 4 |  | hauseqcn.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 5 |  | hauseqcn.e | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 )  =  ( 𝐺  ↾  𝐴 ) ) | 
						
							| 6 |  | hauseqcn.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑋 ) | 
						
							| 7 |  | hauseqcn.c | ⊢ ( 𝜑  →  ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  =  𝑋 ) | 
						
							| 8 |  | cntop1 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ∈  Top ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 10 |  | dmin | ⊢ dom  ( 𝐹  ∩  𝐺 )  ⊆  ( dom  𝐹  ∩  dom  𝐺 ) | 
						
							| 11 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 12 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 13 | 11 12 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 14 |  | fdm | ⊢ ( 𝐹 : ∪  𝐽 ⟶ ∪  𝐾  →  dom  𝐹  =  ∪  𝐽 ) | 
						
							| 15 | 3 13 14 | 3syl | ⊢ ( 𝜑  →  dom  𝐹  =  ∪  𝐽 ) | 
						
							| 16 | 11 12 | cnf | ⊢ ( 𝐺  ∈  ( 𝐽  Cn  𝐾 )  →  𝐺 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 17 |  | fdm | ⊢ ( 𝐺 : ∪  𝐽 ⟶ ∪  𝐾  →  dom  𝐺  =  ∪  𝐽 ) | 
						
							| 18 | 4 16 17 | 3syl | ⊢ ( 𝜑  →  dom  𝐺  =  ∪  𝐽 ) | 
						
							| 19 | 15 18 | ineq12d | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  dom  𝐺 )  =  ( ∪  𝐽  ∩  ∪  𝐽 ) ) | 
						
							| 20 |  | inidm | ⊢ ( ∪  𝐽  ∩  ∪  𝐽 )  =  ∪  𝐽 | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  dom  𝐺 )  =  ∪  𝐽 ) | 
						
							| 22 | 10 21 | sseqtrid | ⊢ ( 𝜑  →  dom  ( 𝐹  ∩  𝐺 )  ⊆  ∪  𝐽 ) | 
						
							| 23 |  | ffn | ⊢ ( 𝐹 : ∪  𝐽 ⟶ ∪  𝐾  →  𝐹  Fn  ∪  𝐽 ) | 
						
							| 24 | 3 13 23 | 3syl | ⊢ ( 𝜑  →  𝐹  Fn  ∪  𝐽 ) | 
						
							| 25 |  | ffn | ⊢ ( 𝐺 : ∪  𝐽 ⟶ ∪  𝐾  →  𝐺  Fn  ∪  𝐽 ) | 
						
							| 26 | 4 16 25 | 3syl | ⊢ ( 𝜑  →  𝐺  Fn  ∪  𝐽 ) | 
						
							| 27 | 6 1 | sseqtrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ∪  𝐽 ) | 
						
							| 28 |  | fnreseql | ⊢ ( ( 𝐹  Fn  ∪  𝐽  ∧  𝐺  Fn  ∪  𝐽  ∧  𝐴  ⊆  ∪  𝐽 )  →  ( ( 𝐹  ↾  𝐴 )  =  ( 𝐺  ↾  𝐴 )  ↔  𝐴  ⊆  dom  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 29 | 24 26 27 28 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐴 )  =  ( 𝐺  ↾  𝐴 )  ↔  𝐴  ⊆  dom  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 30 | 5 29 | mpbid | ⊢ ( 𝜑  →  𝐴  ⊆  dom  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 31 | 11 | clsss | ⊢ ( ( 𝐽  ∈  Top  ∧  dom  ( 𝐹  ∩  𝐺 )  ⊆  ∪  𝐽  ∧  𝐴  ⊆  dom  ( 𝐹  ∩  𝐺 ) )  →  ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ dom  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 32 | 9 22 30 31 | syl3anc | ⊢ ( 𝜑  →  ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ dom  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 33 | 2 3 4 | hauseqlcld | ⊢ ( 𝜑  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 34 |  | cldcls | ⊢ ( dom  ( 𝐹  ∩  𝐺 )  ∈  ( Clsd ‘ 𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ dom  ( 𝐹  ∩  𝐺 ) )  =  dom  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝜑  →  ( ( cls ‘ 𝐽 ) ‘ dom  ( 𝐹  ∩  𝐺 ) )  =  dom  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 36 | 32 7 35 | 3sstr3d | ⊢ ( 𝜑  →  𝑋  ⊆  dom  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 37 | 1 36 | eqsstrrid | ⊢ ( 𝜑  →  ∪  𝐽  ⊆  dom  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 38 |  | fneqeql2 | ⊢ ( ( 𝐹  Fn  ∪  𝐽  ∧  𝐺  Fn  ∪  𝐽 )  →  ( 𝐹  =  𝐺  ↔  ∪  𝐽  ⊆  dom  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 39 | 24 26 38 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  =  𝐺  ↔  ∪  𝐽  ⊆  dom  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 40 | 37 39 | mpbird | ⊢ ( 𝜑  →  𝐹  =  𝐺 ) |