| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hauseqcn.x |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
hauseqcn.k |
⊢ ( 𝜑 → 𝐾 ∈ Haus ) |
| 3 |
|
hauseqcn.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 |
|
hauseqcn.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 5 |
|
hauseqcn.e |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = ( 𝐺 ↾ 𝐴 ) ) |
| 6 |
|
hauseqcn.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 7 |
|
hauseqcn.c |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) |
| 8 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 10 |
|
dmin |
⊢ dom ( 𝐹 ∩ 𝐺 ) ⊆ ( dom 𝐹 ∩ dom 𝐺 ) |
| 11 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 12 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 13 |
11 12
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 14 |
|
fdm |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → dom 𝐹 = ∪ 𝐽 ) |
| 15 |
3 13 14
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = ∪ 𝐽 ) |
| 16 |
11 12
|
cnf |
⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 17 |
|
fdm |
⊢ ( 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 → dom 𝐺 = ∪ 𝐽 ) |
| 18 |
4 16 17
|
3syl |
⊢ ( 𝜑 → dom 𝐺 = ∪ 𝐽 ) |
| 19 |
15 18
|
ineq12d |
⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = ( ∪ 𝐽 ∩ ∪ 𝐽 ) ) |
| 20 |
|
inidm |
⊢ ( ∪ 𝐽 ∩ ∪ 𝐽 ) = ∪ 𝐽 |
| 21 |
19 20
|
eqtrdi |
⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = ∪ 𝐽 ) |
| 22 |
10 21
|
sseqtrid |
⊢ ( 𝜑 → dom ( 𝐹 ∩ 𝐺 ) ⊆ ∪ 𝐽 ) |
| 23 |
|
ffn |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → 𝐹 Fn ∪ 𝐽 ) |
| 24 |
3 13 23
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn ∪ 𝐽 ) |
| 25 |
|
ffn |
⊢ ( 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 → 𝐺 Fn ∪ 𝐽 ) |
| 26 |
4 16 25
|
3syl |
⊢ ( 𝜑 → 𝐺 Fn ∪ 𝐽 ) |
| 27 |
6 1
|
sseqtrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
| 28 |
|
fnreseql |
⊢ ( ( 𝐹 Fn ∪ 𝐽 ∧ 𝐺 Fn ∪ 𝐽 ∧ 𝐴 ⊆ ∪ 𝐽 ) → ( ( 𝐹 ↾ 𝐴 ) = ( 𝐺 ↾ 𝐴 ) ↔ 𝐴 ⊆ dom ( 𝐹 ∩ 𝐺 ) ) ) |
| 29 |
24 26 27 28
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) = ( 𝐺 ↾ 𝐴 ) ↔ 𝐴 ⊆ dom ( 𝐹 ∩ 𝐺 ) ) ) |
| 30 |
5 29
|
mpbid |
⊢ ( 𝜑 → 𝐴 ⊆ dom ( 𝐹 ∩ 𝐺 ) ) |
| 31 |
11
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ dom ( 𝐹 ∩ 𝐺 ) ⊆ ∪ 𝐽 ∧ 𝐴 ⊆ dom ( 𝐹 ∩ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ dom ( 𝐹 ∩ 𝐺 ) ) ) |
| 32 |
9 22 30 31
|
syl3anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ dom ( 𝐹 ∩ 𝐺 ) ) ) |
| 33 |
2 3 4
|
hauseqlcld |
⊢ ( 𝜑 → dom ( 𝐹 ∩ 𝐺 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 34 |
|
cldcls |
⊢ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ dom ( 𝐹 ∩ 𝐺 ) ) = dom ( 𝐹 ∩ 𝐺 ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ dom ( 𝐹 ∩ 𝐺 ) ) = dom ( 𝐹 ∩ 𝐺 ) ) |
| 36 |
32 7 35
|
3sstr3d |
⊢ ( 𝜑 → 𝑋 ⊆ dom ( 𝐹 ∩ 𝐺 ) ) |
| 37 |
1 36
|
eqsstrrid |
⊢ ( 𝜑 → ∪ 𝐽 ⊆ dom ( 𝐹 ∩ 𝐺 ) ) |
| 38 |
|
fneqeql2 |
⊢ ( ( 𝐹 Fn ∪ 𝐽 ∧ 𝐺 Fn ∪ 𝐽 ) → ( 𝐹 = 𝐺 ↔ ∪ 𝐽 ⊆ dom ( 𝐹 ∩ 𝐺 ) ) ) |
| 39 |
24 26 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 = 𝐺 ↔ ∪ 𝐽 ⊆ dom ( 𝐹 ∩ 𝐺 ) ) ) |
| 40 |
37 39
|
mpbird |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |