| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hauseqcn.x |  |-  X = U. J | 
						
							| 2 |  | hauseqcn.k |  |-  ( ph -> K e. Haus ) | 
						
							| 3 |  | hauseqcn.f |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 4 |  | hauseqcn.g |  |-  ( ph -> G e. ( J Cn K ) ) | 
						
							| 5 |  | hauseqcn.e |  |-  ( ph -> ( F |` A ) = ( G |` A ) ) | 
						
							| 6 |  | hauseqcn.a |  |-  ( ph -> A C_ X ) | 
						
							| 7 |  | hauseqcn.c |  |-  ( ph -> ( ( cls ` J ) ` A ) = X ) | 
						
							| 8 |  | cntop1 |  |-  ( F e. ( J Cn K ) -> J e. Top ) | 
						
							| 9 | 3 8 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 10 |  | dmin |  |-  dom ( F i^i G ) C_ ( dom F i^i dom G ) | 
						
							| 11 |  | eqid |  |-  U. J = U. J | 
						
							| 12 |  | eqid |  |-  U. K = U. K | 
						
							| 13 | 11 12 | cnf |  |-  ( F e. ( J Cn K ) -> F : U. J --> U. K ) | 
						
							| 14 |  | fdm |  |-  ( F : U. J --> U. K -> dom F = U. J ) | 
						
							| 15 | 3 13 14 | 3syl |  |-  ( ph -> dom F = U. J ) | 
						
							| 16 | 11 12 | cnf |  |-  ( G e. ( J Cn K ) -> G : U. J --> U. K ) | 
						
							| 17 |  | fdm |  |-  ( G : U. J --> U. K -> dom G = U. J ) | 
						
							| 18 | 4 16 17 | 3syl |  |-  ( ph -> dom G = U. J ) | 
						
							| 19 | 15 18 | ineq12d |  |-  ( ph -> ( dom F i^i dom G ) = ( U. J i^i U. J ) ) | 
						
							| 20 |  | inidm |  |-  ( U. J i^i U. J ) = U. J | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( ph -> ( dom F i^i dom G ) = U. J ) | 
						
							| 22 | 10 21 | sseqtrid |  |-  ( ph -> dom ( F i^i G ) C_ U. J ) | 
						
							| 23 |  | ffn |  |-  ( F : U. J --> U. K -> F Fn U. J ) | 
						
							| 24 | 3 13 23 | 3syl |  |-  ( ph -> F Fn U. J ) | 
						
							| 25 |  | ffn |  |-  ( G : U. J --> U. K -> G Fn U. J ) | 
						
							| 26 | 4 16 25 | 3syl |  |-  ( ph -> G Fn U. J ) | 
						
							| 27 | 6 1 | sseqtrdi |  |-  ( ph -> A C_ U. J ) | 
						
							| 28 |  | fnreseql |  |-  ( ( F Fn U. J /\ G Fn U. J /\ A C_ U. J ) -> ( ( F |` A ) = ( G |` A ) <-> A C_ dom ( F i^i G ) ) ) | 
						
							| 29 | 24 26 27 28 | syl3anc |  |-  ( ph -> ( ( F |` A ) = ( G |` A ) <-> A C_ dom ( F i^i G ) ) ) | 
						
							| 30 | 5 29 | mpbid |  |-  ( ph -> A C_ dom ( F i^i G ) ) | 
						
							| 31 | 11 | clsss |  |-  ( ( J e. Top /\ dom ( F i^i G ) C_ U. J /\ A C_ dom ( F i^i G ) ) -> ( ( cls ` J ) ` A ) C_ ( ( cls ` J ) ` dom ( F i^i G ) ) ) | 
						
							| 32 | 9 22 30 31 | syl3anc |  |-  ( ph -> ( ( cls ` J ) ` A ) C_ ( ( cls ` J ) ` dom ( F i^i G ) ) ) | 
						
							| 33 | 2 3 4 | hauseqlcld |  |-  ( ph -> dom ( F i^i G ) e. ( Clsd ` J ) ) | 
						
							| 34 |  | cldcls |  |-  ( dom ( F i^i G ) e. ( Clsd ` J ) -> ( ( cls ` J ) ` dom ( F i^i G ) ) = dom ( F i^i G ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( ph -> ( ( cls ` J ) ` dom ( F i^i G ) ) = dom ( F i^i G ) ) | 
						
							| 36 | 32 7 35 | 3sstr3d |  |-  ( ph -> X C_ dom ( F i^i G ) ) | 
						
							| 37 | 1 36 | eqsstrrid |  |-  ( ph -> U. J C_ dom ( F i^i G ) ) | 
						
							| 38 |  | fneqeql2 |  |-  ( ( F Fn U. J /\ G Fn U. J ) -> ( F = G <-> U. J C_ dom ( F i^i G ) ) ) | 
						
							| 39 | 24 26 38 | syl2anc |  |-  ( ph -> ( F = G <-> U. J C_ dom ( F i^i G ) ) ) | 
						
							| 40 | 37 39 | mpbird |  |-  ( ph -> F = G ) |