Step |
Hyp |
Ref |
Expression |
1 |
|
hauseqcn.x |
|- X = U. J |
2 |
|
hauseqcn.k |
|- ( ph -> K e. Haus ) |
3 |
|
hauseqcn.f |
|- ( ph -> F e. ( J Cn K ) ) |
4 |
|
hauseqcn.g |
|- ( ph -> G e. ( J Cn K ) ) |
5 |
|
hauseqcn.e |
|- ( ph -> ( F |` A ) = ( G |` A ) ) |
6 |
|
hauseqcn.a |
|- ( ph -> A C_ X ) |
7 |
|
hauseqcn.c |
|- ( ph -> ( ( cls ` J ) ` A ) = X ) |
8 |
|
cntop1 |
|- ( F e. ( J Cn K ) -> J e. Top ) |
9 |
3 8
|
syl |
|- ( ph -> J e. Top ) |
10 |
|
dmin |
|- dom ( F i^i G ) C_ ( dom F i^i dom G ) |
11 |
|
eqid |
|- U. J = U. J |
12 |
|
eqid |
|- U. K = U. K |
13 |
11 12
|
cnf |
|- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
14 |
|
fdm |
|- ( F : U. J --> U. K -> dom F = U. J ) |
15 |
3 13 14
|
3syl |
|- ( ph -> dom F = U. J ) |
16 |
11 12
|
cnf |
|- ( G e. ( J Cn K ) -> G : U. J --> U. K ) |
17 |
|
fdm |
|- ( G : U. J --> U. K -> dom G = U. J ) |
18 |
4 16 17
|
3syl |
|- ( ph -> dom G = U. J ) |
19 |
15 18
|
ineq12d |
|- ( ph -> ( dom F i^i dom G ) = ( U. J i^i U. J ) ) |
20 |
|
inidm |
|- ( U. J i^i U. J ) = U. J |
21 |
19 20
|
eqtrdi |
|- ( ph -> ( dom F i^i dom G ) = U. J ) |
22 |
10 21
|
sseqtrid |
|- ( ph -> dom ( F i^i G ) C_ U. J ) |
23 |
|
ffn |
|- ( F : U. J --> U. K -> F Fn U. J ) |
24 |
3 13 23
|
3syl |
|- ( ph -> F Fn U. J ) |
25 |
|
ffn |
|- ( G : U. J --> U. K -> G Fn U. J ) |
26 |
4 16 25
|
3syl |
|- ( ph -> G Fn U. J ) |
27 |
6 1
|
sseqtrdi |
|- ( ph -> A C_ U. J ) |
28 |
|
fnreseql |
|- ( ( F Fn U. J /\ G Fn U. J /\ A C_ U. J ) -> ( ( F |` A ) = ( G |` A ) <-> A C_ dom ( F i^i G ) ) ) |
29 |
24 26 27 28
|
syl3anc |
|- ( ph -> ( ( F |` A ) = ( G |` A ) <-> A C_ dom ( F i^i G ) ) ) |
30 |
5 29
|
mpbid |
|- ( ph -> A C_ dom ( F i^i G ) ) |
31 |
11
|
clsss |
|- ( ( J e. Top /\ dom ( F i^i G ) C_ U. J /\ A C_ dom ( F i^i G ) ) -> ( ( cls ` J ) ` A ) C_ ( ( cls ` J ) ` dom ( F i^i G ) ) ) |
32 |
9 22 30 31
|
syl3anc |
|- ( ph -> ( ( cls ` J ) ` A ) C_ ( ( cls ` J ) ` dom ( F i^i G ) ) ) |
33 |
2 3 4
|
hauseqlcld |
|- ( ph -> dom ( F i^i G ) e. ( Clsd ` J ) ) |
34 |
|
cldcls |
|- ( dom ( F i^i G ) e. ( Clsd ` J ) -> ( ( cls ` J ) ` dom ( F i^i G ) ) = dom ( F i^i G ) ) |
35 |
33 34
|
syl |
|- ( ph -> ( ( cls ` J ) ` dom ( F i^i G ) ) = dom ( F i^i G ) ) |
36 |
32 7 35
|
3sstr3d |
|- ( ph -> X C_ dom ( F i^i G ) ) |
37 |
1 36
|
eqsstrrid |
|- ( ph -> U. J C_ dom ( F i^i G ) ) |
38 |
|
fneqeql2 |
|- ( ( F Fn U. J /\ G Fn U. J ) -> ( F = G <-> U. J C_ dom ( F i^i G ) ) ) |
39 |
24 26 38
|
syl2anc |
|- ( ph -> ( F = G <-> U. J C_ dom ( F i^i G ) ) ) |
40 |
37 39
|
mpbird |
|- ( ph -> F = G ) |