Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hauseqcn.x | |
|
hauseqcn.k | |
||
hauseqcn.f | |
||
hauseqcn.g | |
||
hauseqcn.e | |
||
hauseqcn.a | |
||
hauseqcn.c | |
||
Assertion | hauseqcn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hauseqcn.x | |
|
2 | hauseqcn.k | |
|
3 | hauseqcn.f | |
|
4 | hauseqcn.g | |
|
5 | hauseqcn.e | |
|
6 | hauseqcn.a | |
|
7 | hauseqcn.c | |
|
8 | cntop1 | |
|
9 | 3 8 | syl | |
10 | dmin | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 | cnf | |
14 | fdm | |
|
15 | 3 13 14 | 3syl | |
16 | 11 12 | cnf | |
17 | fdm | |
|
18 | 4 16 17 | 3syl | |
19 | 15 18 | ineq12d | |
20 | inidm | |
|
21 | 19 20 | eqtrdi | |
22 | 10 21 | sseqtrid | |
23 | ffn | |
|
24 | 3 13 23 | 3syl | |
25 | ffn | |
|
26 | 4 16 25 | 3syl | |
27 | 6 1 | sseqtrdi | |
28 | fnreseql | |
|
29 | 24 26 27 28 | syl3anc | |
30 | 5 29 | mpbid | |
31 | 11 | clsss | |
32 | 9 22 30 31 | syl3anc | |
33 | 2 3 4 | hauseqlcld | |
34 | cldcls | |
|
35 | 33 34 | syl | |
36 | 32 7 35 | 3sstr3d | |
37 | 1 36 | eqsstrrid | |
38 | fneqeql2 | |
|
39 | 24 26 38 | syl2anc | |
40 | 37 39 | mpbird | |