Metamath Proof Explorer


Theorem hauseqcn

Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017)

Ref Expression
Hypotheses hauseqcn.x X=J
hauseqcn.k φKHaus
hauseqcn.f φFJCnK
hauseqcn.g φGJCnK
hauseqcn.e φFA=GA
hauseqcn.a φAX
hauseqcn.c φclsJA=X
Assertion hauseqcn φF=G

Proof

Step Hyp Ref Expression
1 hauseqcn.x X=J
2 hauseqcn.k φKHaus
3 hauseqcn.f φFJCnK
4 hauseqcn.g φGJCnK
5 hauseqcn.e φFA=GA
6 hauseqcn.a φAX
7 hauseqcn.c φclsJA=X
8 cntop1 FJCnKJTop
9 3 8 syl φJTop
10 dmin domFGdomFdomG
11 eqid J=J
12 eqid K=K
13 11 12 cnf FJCnKF:JK
14 fdm F:JKdomF=J
15 3 13 14 3syl φdomF=J
16 11 12 cnf GJCnKG:JK
17 fdm G:JKdomG=J
18 4 16 17 3syl φdomG=J
19 15 18 ineq12d φdomFdomG=JJ
20 inidm JJ=J
21 19 20 eqtrdi φdomFdomG=J
22 10 21 sseqtrid φdomFGJ
23 ffn F:JKFFnJ
24 3 13 23 3syl φFFnJ
25 ffn G:JKGFnJ
26 4 16 25 3syl φGFnJ
27 6 1 sseqtrdi φAJ
28 fnreseql FFnJGFnJAJFA=GAAdomFG
29 24 26 27 28 syl3anc φFA=GAAdomFG
30 5 29 mpbid φAdomFG
31 11 clsss JTopdomFGJAdomFGclsJAclsJdomFG
32 9 22 30 31 syl3anc φclsJAclsJdomFG
33 2 3 4 hauseqlcld φdomFGClsdJ
34 cldcls domFGClsdJclsJdomFG=domFG
35 33 34 syl φclsJdomFG=domFG
36 32 7 35 3sstr3d φXdomFG
37 1 36 eqsstrrid φJdomFG
38 fneqeql2 FFnJGFnJF=GJdomFG
39 24 26 38 syl2anc φF=GJdomFG
40 37 39 mpbird φF=G