| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnextf.1 |
⊢ 𝐶 = ∪ 𝐽 |
| 2 |
|
cnextf.2 |
⊢ 𝐵 = ∪ 𝐾 |
| 3 |
|
cnextf.3 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 4 |
|
cnextf.4 |
⊢ ( 𝜑 → 𝐾 ∈ Haus ) |
| 5 |
|
cnextf.5 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 6 |
|
cnextf.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| 7 |
|
cnextf.6 |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) |
| 8 |
|
cnextf.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 9 |
|
cnextcn.8 |
⊢ ( 𝜑 → 𝐾 ∈ Reg ) |
| 10 |
|
cnextfres1.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
| 11 |
1 2 3 4 5 6 7 8
|
cnextf |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| 12 |
11
|
ffnd |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ) |
| 13 |
|
fnssres |
⊢ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ∧ 𝐴 ⊆ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) Fn 𝐴 ) |
| 14 |
12 6 13
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) Fn 𝐴 ) |
| 15 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 16 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐴 → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) ‘ 𝑦 ) = ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑦 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) ‘ 𝑦 ) = ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑦 ) ) |
| 18 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐶 ) |
| 19 |
1 2 3 4 5 6 7 8
|
cnextfvval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑦 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 20 |
18 19
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑦 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 21 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 23 |
1
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 24 |
3 6 23
|
syl2anc |
⊢ ( 𝜑 → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 26 |
22 25
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 27 |
|
fvex |
⊢ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ V |
| 28 |
7 27
|
eqeltrrdi |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 29 |
28 6
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 30 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 31 |
3 29 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 32 |
|
haustop |
⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) |
| 33 |
4 32
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 34 |
24
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) ) |
| 35 |
5 34
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) |
| 36 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) |
| 37 |
36 2
|
cnnei |
⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) → ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ∀ 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 38 |
31 33 35 37
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ∀ 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 39 |
10 38
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 40 |
39
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ) → ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 41 |
26 40
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 42 |
41
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ) → ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 43 |
|
snssi |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ⊆ 𝐴 ) |
| 44 |
1
|
neitr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ∧ { 𝑦 } ⊆ 𝐴 ) → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) |
| 45 |
3 6 43 44
|
syl2an3an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) |
| 46 |
45
|
rexeqdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ↔ ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ) → ( ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ↔ ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 48 |
42 47
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 49 |
48
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Haus ) |
| 51 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 52 |
51
|
biimpi |
⊢ ( 𝐾 ∈ Top → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 53 |
50 32 52
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 54 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) |
| 55 |
18 54
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 56 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 57 |
3 56
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 59 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐴 ⊆ 𝐶 ) |
| 60 |
|
trnei |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 61 |
58 59 18 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 62 |
55 61
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 63 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 64 |
|
flfnei |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) ) |
| 65 |
53 62 63 64
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) ) |
| 66 |
21 49 65
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 67 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶 ) ) |
| 68 |
67
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 69 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
| 70 |
69
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) |
| 71 |
70
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) |
| 72 |
71
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ) |
| 73 |
72
|
fveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 74 |
73
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ↔ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ) |
| 75 |
68 74
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ) ) |
| 76 |
75 8
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 77 |
18 76
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 78 |
2
|
hausflf2 |
⊢ ( ( ( 𝐾 ∈ Haus ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 79 |
50 62 63 77 78
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 80 |
|
en1eqsn |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∧ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ( 𝐹 ‘ 𝑦 ) } ) |
| 81 |
66 79 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ( 𝐹 ‘ 𝑦 ) } ) |
| 82 |
81
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ∪ { ( 𝐹 ‘ 𝑦 ) } ) |
| 83 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
| 84 |
83
|
unisn |
⊢ ∪ { ( 𝐹 ‘ 𝑦 ) } = ( 𝐹 ‘ 𝑦 ) |
| 85 |
82 84
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 86 |
17 20 85
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 87 |
14 15 86
|
eqfnfvd |
⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) |