| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnextf.1 |
|
| 2 |
|
cnextf.2 |
|
| 3 |
|
cnextf.3 |
|
| 4 |
|
cnextf.4 |
|
| 5 |
|
cnextf.5 |
|
| 6 |
|
cnextf.a |
|
| 7 |
|
cnextf.6 |
|
| 8 |
|
cnextf.7 |
|
| 9 |
|
cnextcn.8 |
|
| 10 |
|
cnextfres1.1 |
|
| 11 |
1 2 3 4 5 6 7 8
|
cnextf |
|
| 12 |
11
|
ffnd |
|
| 13 |
|
fnssres |
|
| 14 |
12 6 13
|
syl2anc |
|
| 15 |
5
|
ffnd |
|
| 16 |
|
fvres |
|
| 17 |
16
|
adantl |
|
| 18 |
6
|
sselda |
|
| 19 |
1 2 3 4 5 6 7 8
|
cnextfvval |
|
| 20 |
18 19
|
syldan |
|
| 21 |
5
|
ffvelcdmda |
|
| 22 |
|
simpr |
|
| 23 |
1
|
restuni |
|
| 24 |
3 6 23
|
syl2anc |
|
| 25 |
24
|
adantr |
|
| 26 |
22 25
|
eleqtrd |
|
| 27 |
|
fvex |
|
| 28 |
7 27
|
eqeltrrdi |
|
| 29 |
28 6
|
ssexd |
|
| 30 |
|
resttop |
|
| 31 |
3 29 30
|
syl2anc |
|
| 32 |
|
haustop |
|
| 33 |
4 32
|
syl |
|
| 34 |
24
|
feq2d |
|
| 35 |
5 34
|
mpbid |
|
| 36 |
|
eqid |
|
| 37 |
36 2
|
cnnei |
|
| 38 |
31 33 35 37
|
syl3anc |
|
| 39 |
10 38
|
mpbid |
|
| 40 |
39
|
r19.21bi |
|
| 41 |
26 40
|
syldan |
|
| 42 |
41
|
r19.21bi |
|
| 43 |
|
snssi |
|
| 44 |
1
|
neitr |
|
| 45 |
3 6 43 44
|
syl2an3an |
|
| 46 |
45
|
rexeqdv |
|
| 47 |
46
|
adantr |
|
| 48 |
42 47
|
mpbid |
|
| 49 |
48
|
ralrimiva |
|
| 50 |
4
|
adantr |
|
| 51 |
2
|
toptopon |
|
| 52 |
51
|
biimpi |
|
| 53 |
50 32 52
|
3syl |
|
| 54 |
7
|
adantr |
|
| 55 |
18 54
|
eleqtrrd |
|
| 56 |
1
|
toptopon |
|
| 57 |
3 56
|
sylib |
|
| 58 |
57
|
adantr |
|
| 59 |
6
|
adantr |
|
| 60 |
|
trnei |
|
| 61 |
58 59 18 60
|
syl3anc |
|
| 62 |
55 61
|
mpbid |
|
| 63 |
5
|
adantr |
|
| 64 |
|
flfnei |
|
| 65 |
53 62 63 64
|
syl3anc |
|
| 66 |
21 49 65
|
mpbir2and |
|
| 67 |
|
eleq1w |
|
| 68 |
67
|
anbi2d |
|
| 69 |
|
sneq |
|
| 70 |
69
|
fveq2d |
|
| 71 |
70
|
oveq1d |
|
| 72 |
71
|
oveq2d |
|
| 73 |
72
|
fveq1d |
|
| 74 |
73
|
neeq1d |
|
| 75 |
68 74
|
imbi12d |
|
| 76 |
75 8
|
chvarvv |
|
| 77 |
18 76
|
syldan |
|
| 78 |
2
|
hausflf2 |
|
| 79 |
50 62 63 77 78
|
syl31anc |
|
| 80 |
|
en1eqsn |
|
| 81 |
66 79 80
|
syl2anc |
|
| 82 |
81
|
unieqd |
|
| 83 |
|
fvex |
|
| 84 |
83
|
unisn |
|
| 85 |
82 84
|
eqtrdi |
|
| 86 |
17 20 85
|
3eqtrd |
|
| 87 |
14 15 86
|
eqfnfvd |
|