| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnextf.1 |
|
| 2 |
|
cnextf.2 |
|
| 3 |
|
cnextf.3 |
|
| 4 |
|
cnextf.4 |
|
| 5 |
|
cnextf.5 |
|
| 6 |
|
cnextf.a |
|
| 7 |
|
cnextf.6 |
|
| 8 |
|
cnextf.7 |
|
| 9 |
1 2
|
cnextfun |
|
| 10 |
3 4 5 6 9
|
syl22anc |
|
| 11 |
|
dfdm3 |
|
| 12 |
|
simpl |
|
| 13 |
7
|
eleq2d |
|
| 14 |
13
|
biimpar |
|
| 15 |
|
n0 |
|
| 16 |
8 15
|
sylib |
|
| 17 |
|
haustop |
|
| 18 |
4 17
|
syl |
|
| 19 |
1 2
|
cnextfval |
|
| 20 |
3 18 5 6 19
|
syl22anc |
|
| 21 |
20
|
eleq2d |
|
| 22 |
|
opeliunxp |
|
| 23 |
21 22
|
bitrdi |
|
| 24 |
23
|
exbidv |
|
| 25 |
|
19.42v |
|
| 26 |
24 25
|
bitrdi |
|
| 27 |
26
|
biimpar |
|
| 28 |
12 14 16 27
|
syl12anc |
|
| 29 |
26
|
simprbda |
|
| 30 |
13
|
adantr |
|
| 31 |
29 30
|
mpbid |
|
| 32 |
28 31
|
impbida |
|
| 33 |
32
|
eqabdv |
|
| 34 |
11 33
|
eqtr4id |
|
| 35 |
|
df-fn |
|
| 36 |
10 34 35
|
sylanbrc |
|
| 37 |
20
|
rneqd |
|
| 38 |
|
rniun |
|
| 39 |
|
vex |
|
| 40 |
39
|
snnz |
|
| 41 |
|
rnxp |
|
| 42 |
40 41
|
ax-mp |
|
| 43 |
13
|
biimpa |
|
| 44 |
2
|
toptopon |
|
| 45 |
18 44
|
sylib |
|
| 46 |
45
|
adantr |
|
| 47 |
1
|
toptopon |
|
| 48 |
3 47
|
sylib |
|
| 49 |
48
|
adantr |
|
| 50 |
6
|
adantr |
|
| 51 |
|
simpr |
|
| 52 |
|
trnei |
|
| 53 |
52
|
biimpa |
|
| 54 |
49 50 51 14 53
|
syl31anc |
|
| 55 |
5
|
adantr |
|
| 56 |
|
flfelbas |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
ssrdv |
|
| 59 |
46 54 55 58
|
syl3anc |
|
| 60 |
43 59
|
syldan |
|
| 61 |
42 60
|
eqsstrid |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
|
iunss |
|
| 64 |
62 63
|
sylibr |
|
| 65 |
38 64
|
eqsstrid |
|
| 66 |
37 65
|
eqsstrd |
|
| 67 |
|
df-f |
|
| 68 |
36 66 67
|
sylanbrc |
|