Metamath Proof Explorer


Theorem cnextfval

Description: The continuous extension of a given function F . (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Hypotheses cnextfval.1 X=J
cnextfval.2 B=K
Assertion cnextfval JTopKTopF:ABAXJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF

Proof

Step Hyp Ref Expression
1 cnextfval.1 X=J
2 cnextfval.2 B=K
3 cnextval JTopKTopJCnExtK=fK𝑝𝑚JxclsJdomfx×KfLimfneiJx𝑡domff
4 3 adantr JTopKTopF:ABAXJCnExtK=fK𝑝𝑚JxclsJdomfx×KfLimfneiJx𝑡domff
5 simpr JTopKTopF:ABAXf=Ff=F
6 5 dmeqd JTopKTopF:ABAXf=Fdomf=domF
7 simplrl JTopKTopF:ABAXf=FF:AB
8 7 fdmd JTopKTopF:ABAXf=FdomF=A
9 6 8 eqtrd JTopKTopF:ABAXf=Fdomf=A
10 9 fveq2d JTopKTopF:ABAXf=FclsJdomf=clsJA
11 9 oveq2d JTopKTopF:ABAXf=FneiJx𝑡domf=neiJx𝑡A
12 11 oveq2d JTopKTopF:ABAXf=FKfLimfneiJx𝑡domf=KfLimfneiJx𝑡A
13 12 5 fveq12d JTopKTopF:ABAXf=FKfLimfneiJx𝑡domff=KfLimfneiJx𝑡AF
14 13 xpeq2d JTopKTopF:ABAXf=Fx×KfLimfneiJx𝑡domff=x×KfLimfneiJx𝑡AF
15 10 14 iuneq12d JTopKTopF:ABAXf=FxclsJdomfx×KfLimfneiJx𝑡domff=xclsJAx×KfLimfneiJx𝑡AF
16 uniexg KTopKV
17 16 ad2antlr JTopKTopF:ABAXKV
18 uniexg JTopJV
19 18 ad2antrr JTopKTopF:ABAXJV
20 eqid A=A
21 20 2 feq23i F:ABF:AK
22 21 biimpi F:ABF:AK
23 22 ad2antrl JTopKTopF:ABAXF:AK
24 1 sseq2i AXAJ
25 24 biimpi AXAJ
26 25 ad2antll JTopKTopF:ABAXAJ
27 elpm2r KVJVF:AKAJFK𝑝𝑚J
28 17 19 23 26 27 syl22anc JTopKTopF:ABAXFK𝑝𝑚J
29 fvex clsJAV
30 vsnex xV
31 fvex KfLimfneiJx𝑡AFV
32 30 31 xpex x×KfLimfneiJx𝑡AFV
33 29 32 iunex xclsJAx×KfLimfneiJx𝑡AFV
34 33 a1i JTopKTopF:ABAXxclsJAx×KfLimfneiJx𝑡AFV
35 4 15 28 34 fvmptd JTopKTopF:ABAXJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF