Metamath Proof Explorer


Theorem cnextfun

Description: If the target space is Hausdorff, a continuous extension is a function. (Contributed by Thierry Arnoux, 20-Dec-2017)

Ref Expression
Hypotheses cnextfrel.1 C = J
cnextfrel.2 B = K
Assertion cnextfun J Top K Haus F : A B A C Fun J CnExt K F

Proof

Step Hyp Ref Expression
1 cnextfrel.1 C = J
2 cnextfrel.2 B = K
3 haustop K Haus K Top
4 1 2 cnextrel J Top K Top F : A B A C Rel J CnExt K F
5 3 4 sylanl2 J Top K Haus F : A B A C Rel J CnExt K F
6 simpllr J Top K Haus F : A B A C x cls J A K Haus
7 1 toptopon J Top J TopOn C
8 7 biimpi J Top J TopOn C
9 8 ad3antrrr J Top K Haus F : A B A C x cls J A J TopOn C
10 simplrr J Top K Haus F : A B A C x cls J A A C
11 9 7 sylibr J Top K Haus F : A B A C x cls J A J Top
12 1 clsss3 J Top A C cls J A C
13 11 10 12 syl2anc J Top K Haus F : A B A C x cls J A cls J A C
14 simpr J Top K Haus F : A B A C x cls J A x cls J A
15 13 14 sseldd J Top K Haus F : A B A C x cls J A x C
16 trnei J TopOn C A C x C x cls J A nei J x 𝑡 A Fil A
17 16 biimpa J TopOn C A C x C x cls J A nei J x 𝑡 A Fil A
18 9 10 15 14 17 syl31anc J Top K Haus F : A B A C x cls J A nei J x 𝑡 A Fil A
19 simplrl J Top K Haus F : A B A C x cls J A F : A B
20 2 hausflf K Haus nei J x 𝑡 A Fil A F : A B * y y K fLimf nei J x 𝑡 A F
21 6 18 19 20 syl3anc J Top K Haus F : A B A C x cls J A * y y K fLimf nei J x 𝑡 A F
22 21 ex J Top K Haus F : A B A C x cls J A * y y K fLimf nei J x 𝑡 A F
23 22 alrimiv J Top K Haus F : A B A C x x cls J A * y y K fLimf nei J x 𝑡 A F
24 moanimv * y x cls J A y K fLimf nei J x 𝑡 A F x cls J A * y y K fLimf nei J x 𝑡 A F
25 24 albii x * y x cls J A y K fLimf nei J x 𝑡 A F x x cls J A * y y K fLimf nei J x 𝑡 A F
26 23 25 sylibr J Top K Haus F : A B A C x * y x cls J A y K fLimf nei J x 𝑡 A F
27 df-br x J CnExt K F y x y J CnExt K F
28 27 a1i J Top K Haus F : A B A C x J CnExt K F y x y J CnExt K F
29 1 2 cnextfval J Top K Top F : A B A C J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
30 3 29 sylanl2 J Top K Haus F : A B A C J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
31 30 eleq2d J Top K Haus F : A B A C x y J CnExt K F x y x cls J A x × K fLimf nei J x 𝑡 A F
32 opeliunxp x y x cls J A x × K fLimf nei J x 𝑡 A F x cls J A y K fLimf nei J x 𝑡 A F
33 32 a1i J Top K Haus F : A B A C x y x cls J A x × K fLimf nei J x 𝑡 A F x cls J A y K fLimf nei J x 𝑡 A F
34 28 31 33 3bitrd J Top K Haus F : A B A C x J CnExt K F y x cls J A y K fLimf nei J x 𝑡 A F
35 34 mobidv J Top K Haus F : A B A C * y x J CnExt K F y * y x cls J A y K fLimf nei J x 𝑡 A F
36 35 albidv J Top K Haus F : A B A C x * y x J CnExt K F y x * y x cls J A y K fLimf nei J x 𝑡 A F
37 26 36 mpbird J Top K Haus F : A B A C x * y x J CnExt K F y
38 dffun6 Fun J CnExt K F Rel J CnExt K F x * y x J CnExt K F y
39 5 37 38 sylanbrc J Top K Haus F : A B A C Fun J CnExt K F