Metamath Proof Explorer


Theorem neitr

Description: The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018)

Ref Expression
Hypothesis neitr.1 X = J
Assertion neitr J Top A X B A nei J 𝑡 A B = nei J B 𝑡 A

Proof

Step Hyp Ref Expression
1 neitr.1 X = J
2 nfv d J Top A X B A
3 nfv d c J 𝑡 A
4 nfre1 d d J 𝑡 A B d d c
5 3 4 nfan d c J 𝑡 A d J 𝑡 A B d d c
6 2 5 nfan d J Top A X B A c J 𝑡 A d J 𝑡 A B d d c
7 simpl c J 𝑡 A d J 𝑡 A B d d c c J 𝑡 A
8 7 anim2i J Top A X B A c J 𝑡 A d J 𝑡 A B d d c J Top A X B A c J 𝑡 A
9 simp-5r J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c J 𝑡 A
10 simp1 J Top A X B A J Top
11 simp2 J Top A X B A A X
12 1 restuni J Top A X A = J 𝑡 A
13 10 11 12 syl2anc J Top A X B A A = J 𝑡 A
14 13 ad5antr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A A = J 𝑡 A
15 9 14 sseqtrrd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c A
16 11 ad5antr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A A X
17 15 16 sstrd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c X
18 10 ad5antr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A J Top
19 simplr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e J
20 1 eltopss J Top e J e X
21 18 19 20 syl2anc J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e X
22 21 ssdifssd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e A X
23 17 22 unssd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c e A X
24 simpr1l J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A B d
25 24 3anassrs J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A B d
26 simpr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A d = e A
27 25 26 sseqtrd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A B e A
28 inss1 e A e
29 27 28 sstrdi J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A B e
30 inundif e A e A = e
31 simpr1r J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A d c
32 31 3anassrs J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A d c
33 26 32 eqsstrrd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e A c
34 unss1 e A c e A e A c e A
35 33 34 syl J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e A e A c e A
36 30 35 eqsstrrid J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e c e A
37 sseq2 b = e B b B e
38 sseq1 b = e b c e A e c e A
39 37 38 anbi12d b = e B b b c e A B e e c e A
40 39 rspcev e J B e e c e A b J B b b c e A
41 19 29 36 40 syl12anc J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A b J B b b c e A
42 indir c e A A = c A e A A
43 incom A e A = e A A
44 disjdif A e A =
45 43 44 eqtr3i e A A =
46 45 uneq2i c A e A A = c A
47 un0 c A = c A
48 42 46 47 3eqtri c e A A = c A
49 df-ss c A c A = c
50 49 biimpi c A c A = c
51 48 50 syl5req c A c = c e A A
52 15 51 syl J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c = c e A A
53 vex c V
54 vex e V
55 54 difexi e A V
56 53 55 unex c e A V
57 sseq1 a = c e A a X c e A X
58 sseq2 a = c e A b a b c e A
59 58 anbi2d a = c e A B b b a B b b c e A
60 59 rexbidv a = c e A b J B b b a b J B b b c e A
61 57 60 anbi12d a = c e A a X b J B b b a c e A X b J B b b c e A
62 ineq1 a = c e A a A = c e A A
63 62 eqeq2d a = c e A c = a A c = c e A A
64 61 63 anbi12d a = c e A a X b J B b b a c = a A c e A X b J B b b c e A c = c e A A
65 56 64 spcev c e A X b J B b b c e A c = c e A A a a X b J B b b a c = a A
66 23 41 52 65 syl21anc J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A a a X b J B b b a c = a A
67 10 ad3antrrr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c J Top
68 10 uniexd J Top A X B A J V
69 1 68 eqeltrid J Top A X B A X V
70 69 11 ssexd J Top A X B A A V
71 70 ad3antrrr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c A V
72 simplr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c d J 𝑡 A
73 elrest J Top A V d J 𝑡 A e J d = e A
74 73 biimpa J Top A V d J 𝑡 A e J d = e A
75 67 71 72 74 syl21anc J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A
76 66 75 r19.29a J Top A X B A c J 𝑡 A d J 𝑡 A B d d c a a X b J B b b a c = a A
77 8 76 sylanl1 J Top A X B A c J 𝑡 A d J 𝑡 A B d d c d J 𝑡 A B d d c a a X b J B b b a c = a A
78 simprr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c d J 𝑡 A B d d c
79 6 77 78 r19.29af J Top A X B A c J 𝑡 A d J 𝑡 A B d d c a a X b J B b b a c = a A
80 inss2 a A A
81 sseq1 c = a A c A a A A
82 80 81 mpbiri c = a A c A
83 82 adantl a X b J B b b a c = a A c A
84 83 exlimiv a a X b J B b b a c = a A c A
85 84 adantl J Top A X B A a a X b J B b b a c = a A c A
86 13 adantr J Top A X B A a a X b J B b b a c = a A A = J 𝑡 A
87 85 86 sseqtrd J Top A X B A a a X b J B b b a c = a A c J 𝑡 A
88 10 ad4antr J Top A X B A c = a A a X b J B b b a J Top
89 70 ad4antr J Top A X B A c = a A a X b J B b b a A V
90 simplr J Top A X B A c = a A a X b J B b b a b J
91 elrestr J Top A V b J b A J 𝑡 A
92 88 89 90 91 syl3anc J Top A X B A c = a A a X b J B b b a b A J 𝑡 A
93 simprl J Top A X B A c = a A a X b J B b b a B b
94 simp3 J Top A X B A B A
95 94 ad4antr J Top A X B A c = a A a X b J B b b a B A
96 93 95 ssind J Top A X B A c = a A a X b J B b b a B b A
97 simprr J Top A X B A c = a A a X b J B b b a b a
98 97 ssrind J Top A X B A c = a A a X b J B b b a b A a A
99 simp-4r J Top A X B A c = a A a X b J B b b a c = a A
100 98 99 sseqtrrd J Top A X B A c = a A a X b J B b b a b A c
101 92 96 100 jca32 J Top A X B A c = a A a X b J B b b a b A J 𝑡 A B b A b A c
102 101 ex J Top A X B A c = a A a X b J B b b a b A J 𝑡 A B b A b A c
103 102 reximdva J Top A X B A c = a A a X b J B b b a b J b A J 𝑡 A B b A b A c
104 103 impr J Top A X B A c = a A a X b J B b b a b J b A J 𝑡 A B b A b A c
105 104 an32s J Top A X B A a X b J B b b a c = a A b J b A J 𝑡 A B b A b A c
106 105 expl J Top A X B A a X b J B b b a c = a A b J b A J 𝑡 A B b A b A c
107 106 exlimdv J Top A X B A a a X b J B b b a c = a A b J b A J 𝑡 A B b A b A c
108 107 imp J Top A X B A a a X b J B b b a c = a A b J b A J 𝑡 A B b A b A c
109 sseq2 d = b A B d B b A
110 sseq1 d = b A d c b A c
111 109 110 anbi12d d = b A B d d c B b A b A c
112 111 rspcev b A J 𝑡 A B b A b A c d J 𝑡 A B d d c
113 112 rexlimivw b J b A J 𝑡 A B b A b A c d J 𝑡 A B d d c
114 108 113 syl J Top A X B A a a X b J B b b a c = a A d J 𝑡 A B d d c
115 87 114 jca J Top A X B A a a X b J B b b a c = a A c J 𝑡 A d J 𝑡 A B d d c
116 79 115 impbida J Top A X B A c J 𝑡 A d J 𝑡 A B d d c a a X b J B b b a c = a A
117 resttop J Top A V J 𝑡 A Top
118 10 70 117 syl2anc J Top A X B A J 𝑡 A Top
119 94 13 sseqtrd J Top A X B A B J 𝑡 A
120 eqid J 𝑡 A = J 𝑡 A
121 120 isnei J 𝑡 A Top B J 𝑡 A c nei J 𝑡 A B c J 𝑡 A d J 𝑡 A B d d c
122 118 119 121 syl2anc J Top A X B A c nei J 𝑡 A B c J 𝑡 A d J 𝑡 A B d d c
123 fvex nei J B V
124 restval nei J B V A V nei J B 𝑡 A = ran a nei J B a A
125 123 70 124 sylancr J Top A X B A nei J B 𝑡 A = ran a nei J B a A
126 125 eleq2d J Top A X B A c nei J B 𝑡 A c ran a nei J B a A
127 94 11 sstrd J Top A X B A B X
128 eqid a nei J B a A = a nei J B a A
129 128 elrnmpt c V c ran a nei J B a A a nei J B c = a A
130 129 elv c ran a nei J B a A a nei J B c = a A
131 df-rex a nei J B c = a A a a nei J B c = a A
132 130 131 bitri c ran a nei J B a A a a nei J B c = a A
133 1 isnei J Top B X a nei J B a X b J B b b a
134 133 anbi1d J Top B X a nei J B c = a A a X b J B b b a c = a A
135 134 exbidv J Top B X a a nei J B c = a A a a X b J B b b a c = a A
136 132 135 syl5bb J Top B X c ran a nei J B a A a a X b J B b b a c = a A
137 10 127 136 syl2anc J Top A X B A c ran a nei J B a A a a X b J B b b a c = a A
138 126 137 bitrd J Top A X B A c nei J B 𝑡 A a a X b J B b b a c = a A
139 116 122 138 3bitr4d J Top A X B A c nei J 𝑡 A B c nei J B 𝑡 A
140 139 eqrdv J Top A X B A nei J 𝑡 A B = nei J B 𝑡 A