| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neitr.1 |
|
| 2 |
|
nfv |
|
| 3 |
|
nfv |
|
| 4 |
|
nfre1 |
|
| 5 |
3 4
|
nfan |
|
| 6 |
2 5
|
nfan |
|
| 7 |
|
simpl |
|
| 8 |
7
|
anim2i |
|
| 9 |
|
simp-5r |
|
| 10 |
|
simp1 |
|
| 11 |
|
simp2 |
|
| 12 |
1
|
restuni |
|
| 13 |
10 11 12
|
syl2anc |
|
| 14 |
13
|
ad5antr |
|
| 15 |
9 14
|
sseqtrrd |
|
| 16 |
11
|
ad5antr |
|
| 17 |
15 16
|
sstrd |
|
| 18 |
10
|
ad5antr |
|
| 19 |
|
simplr |
|
| 20 |
1
|
eltopss |
|
| 21 |
18 19 20
|
syl2anc |
|
| 22 |
21
|
ssdifssd |
|
| 23 |
17 22
|
unssd |
|
| 24 |
|
simpr1l |
|
| 25 |
24
|
3anassrs |
|
| 26 |
|
simpr |
|
| 27 |
25 26
|
sseqtrd |
|
| 28 |
|
inss1 |
|
| 29 |
27 28
|
sstrdi |
|
| 30 |
|
inundif |
|
| 31 |
|
simpr1r |
|
| 32 |
31
|
3anassrs |
|
| 33 |
26 32
|
eqsstrrd |
|
| 34 |
|
unss1 |
|
| 35 |
33 34
|
syl |
|
| 36 |
30 35
|
eqsstrrid |
|
| 37 |
|
sseq2 |
|
| 38 |
|
sseq1 |
|
| 39 |
37 38
|
anbi12d |
|
| 40 |
39
|
rspcev |
|
| 41 |
19 29 36 40
|
syl12anc |
|
| 42 |
|
indir |
|
| 43 |
|
disjdifr |
|
| 44 |
43
|
uneq2i |
|
| 45 |
|
un0 |
|
| 46 |
42 44 45
|
3eqtri |
|
| 47 |
|
dfss2 |
|
| 48 |
47
|
biimpi |
|
| 49 |
46 48
|
eqtr2id |
|
| 50 |
15 49
|
syl |
|
| 51 |
|
vex |
|
| 52 |
|
vex |
|
| 53 |
52
|
difexi |
|
| 54 |
51 53
|
unex |
|
| 55 |
|
sseq1 |
|
| 56 |
|
sseq2 |
|
| 57 |
56
|
anbi2d |
|
| 58 |
57
|
rexbidv |
|
| 59 |
55 58
|
anbi12d |
|
| 60 |
|
ineq1 |
|
| 61 |
60
|
eqeq2d |
|
| 62 |
59 61
|
anbi12d |
|
| 63 |
54 62
|
spcev |
|
| 64 |
23 41 50 63
|
syl21anc |
|
| 65 |
10
|
ad3antrrr |
|
| 66 |
10
|
uniexd |
|
| 67 |
1 66
|
eqeltrid |
|
| 68 |
67 11
|
ssexd |
|
| 69 |
68
|
ad3antrrr |
|
| 70 |
|
simplr |
|
| 71 |
|
elrest |
|
| 72 |
71
|
biimpa |
|
| 73 |
65 69 70 72
|
syl21anc |
|
| 74 |
64 73
|
r19.29a |
|
| 75 |
8 74
|
sylanl1 |
|
| 76 |
|
simprr |
|
| 77 |
6 75 76
|
r19.29af |
|
| 78 |
|
inss2 |
|
| 79 |
|
sseq1 |
|
| 80 |
78 79
|
mpbiri |
|
| 81 |
80
|
adantl |
|
| 82 |
81
|
exlimiv |
|
| 83 |
82
|
adantl |
|
| 84 |
13
|
adantr |
|
| 85 |
83 84
|
sseqtrd |
|
| 86 |
10
|
ad4antr |
|
| 87 |
68
|
ad4antr |
|
| 88 |
|
simplr |
|
| 89 |
|
elrestr |
|
| 90 |
86 87 88 89
|
syl3anc |
|
| 91 |
|
simprl |
|
| 92 |
|
simp3 |
|
| 93 |
92
|
ad4antr |
|
| 94 |
91 93
|
ssind |
|
| 95 |
|
simprr |
|
| 96 |
95
|
ssrind |
|
| 97 |
|
simp-4r |
|
| 98 |
96 97
|
sseqtrrd |
|
| 99 |
90 94 98
|
jca32 |
|
| 100 |
99
|
ex |
|
| 101 |
100
|
reximdva |
|
| 102 |
101
|
impr |
|
| 103 |
102
|
an32s |
|
| 104 |
103
|
expl |
|
| 105 |
104
|
exlimdv |
|
| 106 |
105
|
imp |
|
| 107 |
|
sseq2 |
|
| 108 |
|
sseq1 |
|
| 109 |
107 108
|
anbi12d |
|
| 110 |
109
|
rspcev |
|
| 111 |
110
|
rexlimivw |
|
| 112 |
106 111
|
syl |
|
| 113 |
85 112
|
jca |
|
| 114 |
77 113
|
impbida |
|
| 115 |
|
resttop |
|
| 116 |
10 68 115
|
syl2anc |
|
| 117 |
92 13
|
sseqtrd |
|
| 118 |
|
eqid |
|
| 119 |
118
|
isnei |
|
| 120 |
116 117 119
|
syl2anc |
|
| 121 |
|
fvex |
|
| 122 |
|
restval |
|
| 123 |
121 68 122
|
sylancr |
|
| 124 |
123
|
eleq2d |
|
| 125 |
92 11
|
sstrd |
|
| 126 |
|
eqid |
|
| 127 |
126
|
elrnmpt |
|
| 128 |
127
|
elv |
|
| 129 |
|
df-rex |
|
| 130 |
128 129
|
bitri |
|
| 131 |
1
|
isnei |
|
| 132 |
131
|
anbi1d |
|
| 133 |
132
|
exbidv |
|
| 134 |
130 133
|
bitrid |
|
| 135 |
10 125 134
|
syl2anc |
|
| 136 |
124 135
|
bitrd |
|
| 137 |
114 120 136
|
3bitr4d |
|
| 138 |
137
|
eqrdv |
|