Step |
Hyp |
Ref |
Expression |
1 |
|
neitr.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
nfv |
⊢ Ⅎ 𝑑 ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) |
3 |
|
nfv |
⊢ Ⅎ 𝑑 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) |
4 |
|
nfre1 |
⊢ Ⅎ 𝑑 ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑑 ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
6 |
2 5
|
nfan |
⊢ Ⅎ 𝑑 ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) |
8 |
7
|
anim2i |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) → ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ) |
9 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) |
10 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐽 ∈ Top ) |
11 |
|
simp2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ⊆ 𝑋 ) |
12 |
1
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
14 |
13
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
15 |
9 14
|
sseqtrrd |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑐 ⊆ 𝐴 ) |
16 |
11
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐴 ⊆ 𝑋 ) |
17 |
15 16
|
sstrd |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑐 ⊆ 𝑋 ) |
18 |
10
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐽 ∈ Top ) |
19 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑒 ∈ 𝐽 ) |
20 |
1
|
eltopss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑒 ∈ 𝐽 ) → 𝑒 ⊆ 𝑋 ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑒 ⊆ 𝑋 ) |
22 |
21
|
ssdifssd |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ( 𝑒 ∖ 𝐴 ) ⊆ 𝑋 ) |
23 |
17 22
|
unssd |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ) |
24 |
|
simpr1l |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ∧ 𝑒 ∈ 𝐽 ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) ) → 𝐵 ⊆ 𝑑 ) |
25 |
24
|
3anassrs |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐵 ⊆ 𝑑 ) |
26 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑑 = ( 𝑒 ∩ 𝐴 ) ) |
27 |
25 26
|
sseqtrd |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐵 ⊆ ( 𝑒 ∩ 𝐴 ) ) |
28 |
|
inss1 |
⊢ ( 𝑒 ∩ 𝐴 ) ⊆ 𝑒 |
29 |
27 28
|
sstrdi |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝐵 ⊆ 𝑒 ) |
30 |
|
inundif |
⊢ ( ( 𝑒 ∩ 𝐴 ) ∪ ( 𝑒 ∖ 𝐴 ) ) = 𝑒 |
31 |
|
simpr1r |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ∧ 𝑒 ∈ 𝐽 ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) ) → 𝑑 ⊆ 𝑐 ) |
32 |
31
|
3anassrs |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑑 ⊆ 𝑐 ) |
33 |
26 32
|
eqsstrrd |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ( 𝑒 ∩ 𝐴 ) ⊆ 𝑐 ) |
34 |
|
unss1 |
⊢ ( ( 𝑒 ∩ 𝐴 ) ⊆ 𝑐 → ( ( 𝑒 ∩ 𝐴 ) ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ( ( 𝑒 ∩ 𝐴 ) ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) |
36 |
30 35
|
eqsstrrid |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑒 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) |
37 |
|
sseq2 |
⊢ ( 𝑏 = 𝑒 → ( 𝐵 ⊆ 𝑏 ↔ 𝐵 ⊆ 𝑒 ) ) |
38 |
|
sseq1 |
⊢ ( 𝑏 = 𝑒 → ( 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ↔ 𝑒 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) |
39 |
37 38
|
anbi12d |
⊢ ( 𝑏 = 𝑒 → ( ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ↔ ( 𝐵 ⊆ 𝑒 ∧ 𝑒 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ) |
40 |
39
|
rspcev |
⊢ ( ( 𝑒 ∈ 𝐽 ∧ ( 𝐵 ⊆ 𝑒 ∧ 𝑒 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) → ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) |
41 |
19 29 36 40
|
syl12anc |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) |
42 |
|
indir |
⊢ ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) = ( ( 𝑐 ∩ 𝐴 ) ∪ ( ( 𝑒 ∖ 𝐴 ) ∩ 𝐴 ) ) |
43 |
|
disjdifr |
⊢ ( ( 𝑒 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ |
44 |
43
|
uneq2i |
⊢ ( ( 𝑐 ∩ 𝐴 ) ∪ ( ( 𝑒 ∖ 𝐴 ) ∩ 𝐴 ) ) = ( ( 𝑐 ∩ 𝐴 ) ∪ ∅ ) |
45 |
|
un0 |
⊢ ( ( 𝑐 ∩ 𝐴 ) ∪ ∅ ) = ( 𝑐 ∩ 𝐴 ) |
46 |
42 44 45
|
3eqtri |
⊢ ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) = ( 𝑐 ∩ 𝐴 ) |
47 |
|
df-ss |
⊢ ( 𝑐 ⊆ 𝐴 ↔ ( 𝑐 ∩ 𝐴 ) = 𝑐 ) |
48 |
47
|
biimpi |
⊢ ( 𝑐 ⊆ 𝐴 → ( 𝑐 ∩ 𝐴 ) = 𝑐 ) |
49 |
46 48
|
eqtr2id |
⊢ ( 𝑐 ⊆ 𝐴 → 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) |
50 |
15 49
|
syl |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) |
51 |
|
vex |
⊢ 𝑐 ∈ V |
52 |
|
vex |
⊢ 𝑒 ∈ V |
53 |
52
|
difexi |
⊢ ( 𝑒 ∖ 𝐴 ) ∈ V |
54 |
51 53
|
unex |
⊢ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∈ V |
55 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( 𝑎 ⊆ 𝑋 ↔ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ) ) |
56 |
|
sseq2 |
⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( 𝑏 ⊆ 𝑎 ↔ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) |
57 |
56
|
anbi2d |
⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ↔ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ) |
58 |
57
|
rexbidv |
⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ↔ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ) |
59 |
55 58
|
anbi12d |
⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ↔ ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ) ) |
60 |
|
ineq1 |
⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( 𝑎 ∩ 𝐴 ) = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) |
61 |
60
|
eqeq2d |
⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( 𝑐 = ( 𝑎 ∩ 𝐴 ) ↔ 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) ) |
62 |
59 61
|
anbi12d |
⊢ ( 𝑎 = ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) → ( ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ↔ ( ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ∧ 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) ) ) |
63 |
54 62
|
spcev |
⊢ ( ( ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ) ) ∧ 𝑐 = ( ( 𝑐 ∪ ( 𝑒 ∖ 𝐴 ) ) ∩ 𝐴 ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
64 |
23 41 50 63
|
syl21anc |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑑 = ( 𝑒 ∩ 𝐴 ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
65 |
10
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → 𝐽 ∈ Top ) |
66 |
10
|
uniexd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ∪ 𝐽 ∈ V ) |
67 |
1 66
|
eqeltrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝑋 ∈ V ) |
68 |
67 11
|
ssexd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ∈ V ) |
69 |
68
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → 𝐴 ∈ V ) |
70 |
|
simplr |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) |
71 |
|
elrest |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑒 ∈ 𝐽 𝑑 = ( 𝑒 ∩ 𝐴 ) ) ) |
72 |
71
|
biimpa |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) → ∃ 𝑒 ∈ 𝐽 𝑑 = ( 𝑒 ∩ 𝐴 ) ) |
73 |
65 69 70 72
|
syl21anc |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → ∃ 𝑒 ∈ 𝐽 𝑑 = ( 𝑒 ∩ 𝐴 ) ) |
74 |
64 73
|
r19.29a |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
75 |
8 74
|
sylanl1 |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) ∧ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ) ∧ ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
76 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) → ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
77 |
6 75 76
|
r19.29af |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) → ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
78 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝐴 ) ⊆ 𝐴 |
79 |
|
sseq1 |
⊢ ( 𝑐 = ( 𝑎 ∩ 𝐴 ) → ( 𝑐 ⊆ 𝐴 ↔ ( 𝑎 ∩ 𝐴 ) ⊆ 𝐴 ) ) |
80 |
78 79
|
mpbiri |
⊢ ( 𝑐 = ( 𝑎 ∩ 𝐴 ) → 𝑐 ⊆ 𝐴 ) |
81 |
80
|
adantl |
⊢ ( ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → 𝑐 ⊆ 𝐴 ) |
82 |
81
|
exlimiv |
⊢ ( ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → 𝑐 ⊆ 𝐴 ) |
83 |
82
|
adantl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → 𝑐 ⊆ 𝐴 ) |
84 |
13
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
85 |
83 84
|
sseqtrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) |
86 |
10
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐽 ∈ Top ) |
87 |
68
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐴 ∈ V ) |
88 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝑏 ∈ 𝐽 ) |
89 |
|
elrestr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝑏 ∈ 𝐽 ) → ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
90 |
86 87 88 89
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
91 |
|
simprl |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐵 ⊆ 𝑏 ) |
92 |
|
simp3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
93 |
92
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐵 ⊆ 𝐴 ) |
94 |
91 93
|
ssind |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ) |
95 |
|
simprr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝑏 ⊆ 𝑎 ) |
96 |
95
|
ssrind |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → ( 𝑏 ∩ 𝐴 ) ⊆ ( 𝑎 ∩ 𝐴 ) ) |
97 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → 𝑐 = ( 𝑎 ∩ 𝐴 ) ) |
98 |
96 97
|
sseqtrrd |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) |
99 |
90 94 98
|
jca32 |
⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) ∧ ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) → ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
100 |
99
|
ex |
⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ 𝐽 ) → ( ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) ) |
101 |
100
|
reximdva |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑎 ⊆ 𝑋 ) → ( ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) ) |
102 |
101
|
impr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
103 |
102
|
an32s |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
104 |
103
|
expl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) ) |
105 |
104
|
exlimdv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) ) |
106 |
105
|
imp |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
107 |
|
sseq2 |
⊢ ( 𝑑 = ( 𝑏 ∩ 𝐴 ) → ( 𝐵 ⊆ 𝑑 ↔ 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ) ) |
108 |
|
sseq1 |
⊢ ( 𝑑 = ( 𝑏 ∩ 𝐴 ) → ( 𝑑 ⊆ 𝑐 ↔ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) |
109 |
107 108
|
anbi12d |
⊢ ( 𝑑 = ( 𝑏 ∩ 𝐴 ) → ( ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ↔ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) ) |
110 |
109
|
rspcev |
⊢ ( ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) → ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
111 |
110
|
rexlimivw |
⊢ ( ∃ 𝑏 ∈ 𝐽 ( ( 𝑏 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ ( 𝐵 ⊆ ( 𝑏 ∩ 𝐴 ) ∧ ( 𝑏 ∩ 𝐴 ) ⊆ 𝑐 ) ) → ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
112 |
106 111
|
syl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) |
113 |
85 112
|
jca |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) ∧ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) → ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) |
114 |
77 113
|
impbida |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
115 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
116 |
10 68 115
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
117 |
92 13
|
sseqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) |
118 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) |
119 |
118
|
isnei |
⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ 𝐵 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) → ( 𝑐 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) ↔ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) ) |
120 |
116 117 119
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) ↔ ( 𝑐 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ∧ ∃ 𝑑 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝐵 ⊆ 𝑑 ∧ 𝑑 ⊆ 𝑐 ) ) ) ) |
121 |
|
fvex |
⊢ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∈ V |
122 |
|
restval |
⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∈ V ∧ 𝐴 ∈ V ) → ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) = ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ) |
123 |
121 68 122
|
sylancr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) = ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ) |
124 |
123
|
eleq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ↔ 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ) ) |
125 |
92 11
|
sstrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝑋 ) |
126 |
|
eqid |
⊢ ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) = ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) |
127 |
126
|
elrnmpt |
⊢ ( 𝑐 ∈ V → ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
128 |
127
|
elv |
⊢ ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) 𝑐 = ( 𝑎 ∩ 𝐴 ) ) |
129 |
|
df-rex |
⊢ ( ∃ 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) 𝑐 = ( 𝑎 ∩ 𝐴 ) ↔ ∃ 𝑎 ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
130 |
128 129
|
bitri |
⊢ ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) |
131 |
1
|
isnei |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↔ ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) ) |
132 |
131
|
anbi1d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ↔ ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
133 |
132
|
exbidv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ∃ 𝑎 ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
134 |
130 133
|
syl5bb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
135 |
10 125 134
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ran ( 𝑎 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↦ ( 𝑎 ∩ 𝐴 ) ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
136 |
124 135
|
bitrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ( ( 𝑎 ⊆ 𝑋 ∧ ∃ 𝑏 ∈ 𝐽 ( 𝐵 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ∧ 𝑐 = ( 𝑎 ∩ 𝐴 ) ) ) ) |
137 |
114 120 136
|
3bitr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑐 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) ↔ 𝑐 ∈ ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
138 |
137
|
eqrdv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ 𝐵 ) = ( ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↾t 𝐴 ) ) |