Metamath Proof Explorer


Theorem redvr

Description: The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion redvr
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A ( /r ` RRfld ) B ) = ( A / B ) )

Proof

Step Hyp Ref Expression
1 resubdrg
 |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing )
2 1 simpli
 |-  RR e. ( SubRing ` CCfld )
3 simp1
 |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> A e. RR )
4 3simpc
 |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( B e. RR /\ B =/= 0 ) )
5 1 simpri
 |-  RRfld e. DivRing
6 rebase
 |-  RR = ( Base ` RRfld )
7 eqid
 |-  ( Unit ` RRfld ) = ( Unit ` RRfld )
8 re0g
 |-  0 = ( 0g ` RRfld )
9 6 7 8 drngunit
 |-  ( RRfld e. DivRing -> ( B e. ( Unit ` RRfld ) <-> ( B e. RR /\ B =/= 0 ) ) )
10 5 9 ax-mp
 |-  ( B e. ( Unit ` RRfld ) <-> ( B e. RR /\ B =/= 0 ) )
11 4 10 sylibr
 |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> B e. ( Unit ` RRfld ) )
12 df-refld
 |-  RRfld = ( CCfld |`s RR )
13 cnflddiv
 |-  / = ( /r ` CCfld )
14 eqid
 |-  ( /r ` RRfld ) = ( /r ` RRfld )
15 12 13 7 14 subrgdv
 |-  ( ( RR e. ( SubRing ` CCfld ) /\ A e. RR /\ B e. ( Unit ` RRfld ) ) -> ( A / B ) = ( A ( /r ` RRfld ) B ) )
16 2 3 11 15 mp3an2i
 |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) = ( A ( /r ` RRfld ) B ) )
17 16 eqcomd
 |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A ( /r ` RRfld ) B ) = ( A / B ) )