Metamath Proof Explorer


Theorem smfsupdmmbl

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses smfsupdmmbl.1
|- F/ n ph
smfsupdmmbl.2
|- F/ x ph
smfsupdmmbl.3
|- F/_ x F
smfsupdmmbl.4
|- ( ph -> M e. ZZ )
smfsupdmmbl.5
|- Z = ( ZZ>= ` M )
smfsupdmmbl.6
|- ( ph -> S e. SAlg )
smfsupdmmbl.7
|- ( ph -> F : Z --> ( SMblFn ` S ) )
smfsupdmmbl.8
|- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S )
smfsupdmmbl.9
|- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y }
smfsupdmmbl.10
|- G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) )
Assertion smfsupdmmbl
|- ( ph -> dom G e. S )

Proof

Step Hyp Ref Expression
1 smfsupdmmbl.1
 |-  F/ n ph
2 smfsupdmmbl.2
 |-  F/ x ph
3 smfsupdmmbl.3
 |-  F/_ x F
4 smfsupdmmbl.4
 |-  ( ph -> M e. ZZ )
5 smfsupdmmbl.5
 |-  Z = ( ZZ>= ` M )
6 smfsupdmmbl.6
 |-  ( ph -> S e. SAlg )
7 smfsupdmmbl.7
 |-  ( ph -> F : Z --> ( SMblFn ` S ) )
8 smfsupdmmbl.8
 |-  ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S )
9 smfsupdmmbl.9
 |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y }
10 smfsupdmmbl.10
 |-  G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) )
11 nfv
 |-  F/ m ph
12 eqid
 |-  ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | ( ( F ` n ) ` x ) < m } ) ) = ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | ( ( F ` n ) ` x ) < m } ) )
13 1 2 11 3 4 5 6 7 8 9 12 10 smfsupdmmbllem
 |-  ( ph -> dom G e. S )