Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smfsupdmmbl.1 | |- F/ n ph |
|
| smfsupdmmbl.2 | |- F/ x ph |
||
| smfsupdmmbl.3 | |- F/_ x F |
||
| smfsupdmmbl.4 | |- ( ph -> M e. ZZ ) |
||
| smfsupdmmbl.5 | |- Z = ( ZZ>= ` M ) |
||
| smfsupdmmbl.6 | |- ( ph -> S e. SAlg ) |
||
| smfsupdmmbl.7 | |- ( ph -> F : Z --> ( SMblFn ` S ) ) |
||
| smfsupdmmbl.8 | |- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S ) |
||
| smfsupdmmbl.9 | |- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
||
| smfsupdmmbl.10 | |- G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
||
| Assertion | smfsupdmmbl | |- ( ph -> dom G e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfsupdmmbl.1 | |- F/ n ph |
|
| 2 | smfsupdmmbl.2 | |- F/ x ph |
|
| 3 | smfsupdmmbl.3 | |- F/_ x F |
|
| 4 | smfsupdmmbl.4 | |- ( ph -> M e. ZZ ) |
|
| 5 | smfsupdmmbl.5 | |- Z = ( ZZ>= ` M ) |
|
| 6 | smfsupdmmbl.6 | |- ( ph -> S e. SAlg ) |
|
| 7 | smfsupdmmbl.7 | |- ( ph -> F : Z --> ( SMblFn ` S ) ) |
|
| 8 | smfsupdmmbl.8 | |- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S ) |
|
| 9 | smfsupdmmbl.9 | |- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
|
| 10 | smfsupdmmbl.10 | |- G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
| 11 | nfv | |- F/ m ph |
|
| 12 | eqid | |- ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | ( ( F ` n ) ` x ) < m } ) ) = ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | ( ( F ` n ) ` x ) < m } ) ) |
|
| 13 | 1 2 11 3 4 5 6 7 8 9 12 10 | smfsupdmmbllem | |- ( ph -> dom G e. S ) |