Metamath Proof Explorer


Theorem smfsupdmmbl

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses smfsupdmmbl.1 n φ
smfsupdmmbl.2 x φ
smfsupdmmbl.3 _ x F
smfsupdmmbl.4 φ M
smfsupdmmbl.5 Z = M
smfsupdmmbl.6 φ S SAlg
smfsupdmmbl.7 φ F : Z SMblFn S
smfsupdmmbl.8 φ n Z dom F n S
smfsupdmmbl.9 D = x n Z dom F n | y n Z F n x y
smfsupdmmbl.10 G = x D sup ran n Z F n x <
Assertion smfsupdmmbl φ dom G S

Proof

Step Hyp Ref Expression
1 smfsupdmmbl.1 n φ
2 smfsupdmmbl.2 x φ
3 smfsupdmmbl.3 _ x F
4 smfsupdmmbl.4 φ M
5 smfsupdmmbl.5 Z = M
6 smfsupdmmbl.6 φ S SAlg
7 smfsupdmmbl.7 φ F : Z SMblFn S
8 smfsupdmmbl.8 φ n Z dom F n S
9 smfsupdmmbl.9 D = x n Z dom F n | y n Z F n x y
10 smfsupdmmbl.10 G = x D sup ran n Z F n x <
11 nfv m φ
12 eqid n Z m x dom F n | F n x < m = n Z m x dom F n | F n x < m
13 1 2 11 3 4 5 6 7 8 9 12 10 smfsupdmmbllem φ dom G S