Metamath Proof Explorer


Theorem smfsupdmmbllem

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses smfsupdmmbllem.1 n φ
smfsupdmmbllem.2 x φ
smfsupdmmbllem.3 m φ
smfsupdmmbllem.4 _ x F
smfsupdmmbllem.5 φ M
smfsupdmmbllem.6 Z = M
smfsupdmmbllem.7 φ S SAlg
smfsupdmmbllem.8 φ F : Z SMblFn S
smfsupdmmbllem.9 φ n Z dom F n S
smfsupdmmbllem.10 D = x n Z dom F n | y n Z F n x y
smfsupdmmbllem.11 H = n Z m x dom F n | F n x < m
smfsupdmmbllem.12 G = x D sup ran n Z F n x <
Assertion smfsupdmmbllem φ dom G S

Proof

Step Hyp Ref Expression
1 smfsupdmmbllem.1 n φ
2 smfsupdmmbllem.2 x φ
3 smfsupdmmbllem.3 m φ
4 smfsupdmmbllem.4 _ x F
5 smfsupdmmbllem.5 φ M
6 smfsupdmmbllem.6 Z = M
7 smfsupdmmbllem.7 φ S SAlg
8 smfsupdmmbllem.8 φ F : Z SMblFn S
9 smfsupdmmbllem.9 φ n Z dom F n S
10 smfsupdmmbllem.10 D = x n Z dom F n | y n Z F n x y
11 smfsupdmmbllem.11 H = n Z m x dom F n | F n x < m
12 smfsupdmmbllem.12 G = x D sup ran n Z F n x <
13 7 adantr φ n Z S SAlg
14 8 ffvelcdmda φ n Z F n SMblFn S
15 eqid dom F n = dom F n
16 13 14 15 smff φ n Z F n : dom F n
17 16 frexr φ n Z F n : dom F n *
18 1 2 3 4 17 10 12 11 fsupdm2 φ dom G = m n Z H n m
19 nfcv _ m S
20 nfcv _ m
21 nnct ω
22 21 a1i φ ω
23 nfv n m
24 1 23 nfan n φ m
25 nfcv _ n S
26 nfcv _ n Z
27 7 adantr φ m S SAlg
28 6 uzct Z ω
29 28 a1i φ m Z ω
30 5 6 uzn0d φ Z
31 30 adantr φ m Z
32 27 adantr φ m n Z S SAlg
33 9 adantlr φ m n Z dom F n S
34 32 33 salrestss φ m n Z S 𝑡 dom F n S
35 nfv m n Z
36 3 35 nfan m φ n Z
37 nfcv _ x n
38 4 37 nffv _ x F n
39 14 adantlr φ m n Z F n SMblFn S
40 nnxr m m *
41 40 ad2antlr φ m n Z m *
42 38 32 39 15 41 smfpimltxr φ m n Z x dom F n | F n x < m S 𝑡 dom F n
43 42 an32s φ n Z m x dom F n | F n x < m S 𝑡 dom F n
44 36 43 fmptd2f φ n Z m x dom F n | F n x < m : S 𝑡 dom F n
45 simpr φ n Z n Z
46 nnex V
47 46 mptex m x dom F n | F n x < m V
48 11 fvmpt2 n Z m x dom F n | F n x < m V H n = m x dom F n | F n x < m
49 45 47 48 sylancl φ n Z H n = m x dom F n | F n x < m
50 49 feq1d φ n Z H n : S 𝑡 dom F n m x dom F n | F n x < m : S 𝑡 dom F n
51 44 50 mpbird φ n Z H n : S 𝑡 dom F n
52 51 adantlr φ m n Z H n : S 𝑡 dom F n
53 simplr φ m n Z m
54 52 53 ffvelcdmd φ m n Z H n m S 𝑡 dom F n
55 34 54 sseldd φ m n Z H n m S
56 24 25 26 27 29 31 55 saliinclf φ m n Z H n m S
57 3 19 20 7 22 56 saliunclf φ m n Z H n m S
58 18 57 eqeltrd φ dom G S