| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsupdmmbllem.1 | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | smfsupdmmbllem.2 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 3 |  | smfsupdmmbllem.3 | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 4 |  | smfsupdmmbllem.4 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 5 |  | smfsupdmmbllem.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 6 |  | smfsupdmmbllem.6 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 7 |  | smfsupdmmbllem.7 | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 8 |  | smfsupdmmbllem.8 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 9 |  | smfsupdmmbllem.9 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  dom  ( 𝐹 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 10 |  | smfsupdmmbllem.10 | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } | 
						
							| 11 |  | smfsupdmmbllem.11 | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) ) | 
						
							| 12 |  | smfsupdmmbllem.12 | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 14 | 8 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 15 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 16 | 13 14 15 | smff | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 17 | 16 | frexr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) | 
						
							| 18 | 1 2 3 4 17 10 12 11 | fsupdm2 | ⊢ ( 𝜑  →  dom  𝐺  =  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑚 𝑆 | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑚 ℕ | 
						
							| 21 |  | nnct | ⊢ ℕ  ≼  ω | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ℕ  ≼  ω ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑛 𝑚  ∈  ℕ | 
						
							| 24 | 1 23 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑛 𝑆 | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑛 𝑍 | 
						
							| 27 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑆  ∈  SAlg ) | 
						
							| 28 | 6 | uzct | ⊢ 𝑍  ≼  ω | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑍  ≼  ω ) | 
						
							| 30 | 5 6 | uzn0d | ⊢ ( 𝜑  →  𝑍  ≠  ∅ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑍  ≠  ∅ ) | 
						
							| 32 | 27 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 33 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  dom  ( 𝐹 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 34 | 32 33 | salrestss | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) )  ⊆  𝑆 ) | 
						
							| 35 |  | nfv | ⊢ Ⅎ 𝑚 𝑛  ∈  𝑍 | 
						
							| 36 | 3 35 | nfan | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑛  ∈  𝑍 ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑥 𝑛 | 
						
							| 38 | 4 37 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑛 ) | 
						
							| 39 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 40 |  | nnxr | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ* ) | 
						
							| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  𝑚  ∈  ℝ* ) | 
						
							| 42 | 38 32 39 15 41 | smfpimltxr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 }  ∈  ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 43 | 42 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ℕ )  →  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 }  ∈  ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 44 | 36 43 | fmptd2f | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) : ℕ ⟶ ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 45 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 46 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 47 | 46 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } )  ∈  V | 
						
							| 48 | 11 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } )  ∈  V )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) ) | 
						
							| 49 | 45 47 48 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) ) | 
						
							| 50 | 49 | feq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐻 ‘ 𝑛 ) : ℕ ⟶ ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) )  ↔  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  <  𝑚 } ) : ℕ ⟶ ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 51 | 44 50 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 ) : ℕ ⟶ ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 52 | 51 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 ) : ℕ ⟶ ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  𝑚  ∈  ℕ ) | 
						
							| 54 | 52 53 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ∈  ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 55 | 34 54 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ∈  𝑆 ) | 
						
							| 56 | 24 25 26 27 29 31 55 | saliinclf | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ∈  𝑆 ) | 
						
							| 57 | 3 19 20 7 22 56 | saliunclf | ⊢ ( 𝜑  →  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ∈  𝑆 ) | 
						
							| 58 | 18 57 | eqeltrd | ⊢ ( 𝜑  →  dom  𝐺  ∈  𝑆 ) |