Step |
Hyp |
Ref |
Expression |
1 |
|
smfsupdmmbllem.1 |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
smfsupdmmbllem.2 |
⊢ Ⅎ 𝑥 𝜑 |
3 |
|
smfsupdmmbllem.3 |
⊢ Ⅎ 𝑚 𝜑 |
4 |
|
smfsupdmmbllem.4 |
⊢ Ⅎ 𝑥 𝐹 |
5 |
|
smfsupdmmbllem.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
6 |
|
smfsupdmmbllem.6 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
7 |
|
smfsupdmmbllem.7 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
8 |
|
smfsupdmmbllem.8 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
9 |
|
smfsupdmmbllem.9 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐹 ‘ 𝑛 ) ∈ 𝑆 ) |
10 |
|
smfsupdmmbllem.10 |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
11 |
|
smfsupdmmbllem.11 |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ) |
12 |
|
smfsupdmmbllem.12 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
14 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
15 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑛 ) |
16 |
13 14 15
|
smff |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
17 |
16
|
frexr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) |
18 |
1 2 3 4 17 10 12 11
|
fsupdm2 |
⊢ ( 𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑆 |
20 |
|
nfcv |
⊢ Ⅎ 𝑚 ℕ |
21 |
|
nnct |
⊢ ℕ ≼ ω |
22 |
21
|
a1i |
⊢ ( 𝜑 → ℕ ≼ ω ) |
23 |
|
nfv |
⊢ Ⅎ 𝑛 𝑚 ∈ ℕ |
24 |
1 23
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑆 |
26 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑍 |
27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑆 ∈ SAlg ) |
28 |
6
|
uzct |
⊢ 𝑍 ≼ ω |
29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑍 ≼ ω ) |
30 |
5 6
|
uzn0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑍 ≠ ∅ ) |
32 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
33 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐹 ‘ 𝑛 ) ∈ 𝑆 ) |
34 |
32 33
|
salrestss |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑆 ) |
35 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
36 |
3 35
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑛 |
38 |
4 37
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑛 ) |
39 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
40 |
|
nnxr |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ* ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → 𝑚 ∈ ℝ* ) |
42 |
38 32 39 15 41
|
smfpimltxr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ) |
43 |
42
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ) |
44 |
36 43
|
fmptd2f |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) : ℕ ⟶ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ) |
45 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
46 |
|
nnex |
⊢ ℕ ∈ V |
47 |
46
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ∈ V |
48 |
11
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ∈ V ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ) |
49 |
45 47 48
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ) |
50 |
49
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑛 ) : ℕ ⟶ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ↔ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < 𝑚 } ) : ℕ ⟶ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ) ) |
51 |
44 50
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) : ℕ ⟶ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ) |
52 |
51
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) : ℕ ⟶ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ) |
53 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → 𝑚 ∈ ℕ ) |
54 |
52 53
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑛 ) ) ) |
55 |
34 54
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ∈ 𝑆 ) |
56 |
24 25 26 27 29 31 55
|
saliinclf |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ∈ 𝑆 ) |
57 |
3 19 20 7 22 56
|
saliunclf |
⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ∈ 𝑆 ) |
58 |
18 57
|
eqeltrd |
⊢ ( 𝜑 → dom 𝐺 ∈ 𝑆 ) |