Metamath Proof Explorer


Theorem smfsupdmmbl

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses smfsupdmmbl.1 𝑛 𝜑
smfsupdmmbl.2 𝑥 𝜑
smfsupdmmbl.3 𝑥 𝐹
smfsupdmmbl.4 ( 𝜑𝑀 ∈ ℤ )
smfsupdmmbl.5 𝑍 = ( ℤ𝑀 )
smfsupdmmbl.6 ( 𝜑𝑆 ∈ SAlg )
smfsupdmmbl.7 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfsupdmmbl.8 ( ( 𝜑𝑛𝑍 ) → dom ( 𝐹𝑛 ) ∈ 𝑆 )
smfsupdmmbl.9 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
smfsupdmmbl.10 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
Assertion smfsupdmmbl ( 𝜑 → dom 𝐺𝑆 )

Proof

Step Hyp Ref Expression
1 smfsupdmmbl.1 𝑛 𝜑
2 smfsupdmmbl.2 𝑥 𝜑
3 smfsupdmmbl.3 𝑥 𝐹
4 smfsupdmmbl.4 ( 𝜑𝑀 ∈ ℤ )
5 smfsupdmmbl.5 𝑍 = ( ℤ𝑀 )
6 smfsupdmmbl.6 ( 𝜑𝑆 ∈ SAlg )
7 smfsupdmmbl.7 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
8 smfsupdmmbl.8 ( ( 𝜑𝑛𝑍 ) → dom ( 𝐹𝑛 ) ∈ 𝑆 )
9 smfsupdmmbl.9 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 }
10 smfsupdmmbl.10 𝐺 = ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
11 nfv 𝑚 𝜑
12 eqid ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) ) = ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ ( ( 𝐹𝑛 ) ‘ 𝑥 ) < 𝑚 } ) )
13 1 2 11 3 4 5 6 7 8 9 12 10 smfsupdmmbllem ( 𝜑 → dom 𝐺𝑆 )