| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finfdm.1 | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | finfdm.2 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 3 |  | finfdm.3 | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 4 |  | finfdm.4 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 5 |  | finfdm.5 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) | 
						
							| 6 |  | finfdm.6 | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | 
						
							| 7 |  | finfdm.7 | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 ℕ | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 10 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | 
						
							| 11 | 8 10 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 12 | 9 11 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛  ∈  𝑍  ↦  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) | 
						
							| 13 | 7 12 | nfcxfr | ⊢ Ⅎ 𝑥 𝐻 | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑥 𝑛 | 
						
							| 15 | 13 14 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑛 ) | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑥 𝑚 | 
						
							| 17 | 15 16 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 18 | 9 17 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 19 | 8 18 | nfiun | ⊢ Ⅎ 𝑥 ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑚 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 21 | 3 20 | nfan | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑚 𝑦  ∈  ℝ | 
						
							| 23 | 21 22 | nfan | ⊢ Ⅎ 𝑚 ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑚 ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) | 
						
							| 25 | 23 24 | nfan | ⊢ Ⅎ 𝑚 ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 26 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 27 | 26 | nfel2 | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 28 | 1 27 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑛 𝑦  ∈  ℝ | 
						
							| 30 | 28 29 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ ) | 
						
							| 31 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) | 
						
							| 32 | 30 31 | nfan | ⊢ Ⅎ 𝑛 ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ 𝑛 𝑚  ∈  ℕ | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑛 - 𝑦  <  𝑚 | 
						
							| 35 | 32 33 34 | nf3an | ⊢ Ⅎ 𝑛 ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 ) | 
						
							| 36 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  →  𝑥  ∈  V ) | 
						
							| 38 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 39 | 38 | 3ad2antl1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 41 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 43 |  | simpl2 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑚  ∈  ℕ ) | 
						
							| 44 |  | nnre | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ ) | 
						
							| 45 | 44 | renegcld | ⊢ ( 𝑚  ∈  ℕ  →  - 𝑚  ∈  ℝ ) | 
						
							| 46 | 45 | rexrd | ⊢ ( 𝑚  ∈  ℕ  →  - 𝑚  ∈  ℝ* ) | 
						
							| 47 | 43 46 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  - 𝑚  ∈  ℝ* ) | 
						
							| 48 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ∈  ℝ ) | 
						
							| 49 |  | rexr | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℝ* ) | 
						
							| 50 | 48 49 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ∈  ℝ* ) | 
						
							| 51 | 50 | 3ad2antl1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ∈  ℝ* ) | 
						
							| 52 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 53 | 52 | 3ad2antl1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 54 | 5 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) | 
						
							| 55 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 56 | 54 55 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 57 | 53 40 42 56 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 58 | 48 | 3ad2antl1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ∈  ℝ ) | 
						
							| 59 |  | simpl3 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  - 𝑦  <  𝑚 ) | 
						
							| 60 |  | simp1 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  →  𝑦  ∈  ℝ ) | 
						
							| 61 | 44 | 3ad2ant2 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  →  𝑚  ∈  ℝ ) | 
						
							| 62 |  | simp3 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  →  - 𝑦  <  𝑚 ) | 
						
							| 63 | 60 61 62 | ltnegcon1d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  →  - 𝑚  <  𝑦 ) | 
						
							| 64 | 58 43 59 63 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  - 𝑚  <  𝑦 ) | 
						
							| 65 |  | simpl1r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 66 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 67 | 65 40 66 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 68 | 47 51 57 64 67 | xrltletrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 69 | 42 68 | rabidd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 70 |  | id | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  𝑍 ) | 
						
							| 71 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 72 | 71 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } )  ∈  V | 
						
							| 73 | 72 | a1i | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } )  ∈  V ) | 
						
							| 74 | 7 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } )  ∈  V )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) | 
						
							| 75 | 70 73 74 | syl2anc | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) | 
						
							| 76 | 4 14 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑛 ) | 
						
							| 77 | 76 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 78 |  | fvex | ⊢ ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 79 | 78 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 80 | 77 79 | rabexf | ⊢ { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  ∈  V | 
						
							| 81 | 80 | a1i | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ℕ )  →  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  ∈  V ) | 
						
							| 82 | 75 81 | fvmpt2d | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ℕ )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  =  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 83 | 82 | eqcomd | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ℕ )  →  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  =  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 84 | 40 43 83 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  =  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 85 | 69 84 | eleqtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 86 | 35 37 85 | eliind2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑚  ∈  ℕ  ∧  - 𝑦  <  𝑚 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 87 |  | renegcl | ⊢ ( 𝑦  ∈  ℝ  →  - 𝑦  ∈  ℝ ) | 
						
							| 88 | 87 | archd | ⊢ ( 𝑦  ∈  ℝ  →  ∃ 𝑚  ∈  ℕ - 𝑦  <  𝑚 ) | 
						
							| 89 | 88 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  ∃ 𝑚  ∈  ℕ - 𝑦  <  𝑚 ) | 
						
							| 90 | 25 86 89 | reximdd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 91 | 90 | rexlimdva2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  →  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ) | 
						
							| 92 | 91 | 3impia | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 93 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ↔  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 94 | 92 93 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  𝑥  ∈  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 95 | 2 19 94 | rabssd | ⊢ ( 𝜑  →  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  ⊆  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 96 | 6 95 | eqsstrid | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 97 |  | nfcv | ⊢ Ⅎ 𝑚 𝐷 | 
						
							| 98 |  | nfv | ⊢ Ⅎ 𝑥 𝑚  ∈  ℕ | 
						
							| 99 | 2 98 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 100 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | 
						
							| 101 | 6 100 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 102 | 1 33 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 103 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 104 | 103 | nfel2 | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) | 
						
							| 105 | 102 104 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 106 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 107 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 108 | 107 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) | 
						
							| 109 | 70 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 110 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑚  ∈  ℕ ) | 
						
							| 111 | 109 110 82 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  =  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 112 | 108 111 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 113 |  | rabidim1 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 114 | 112 113 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 115 | 105 106 114 | eliind2 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 116 | 45 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  - 𝑚  ∈  ℝ ) | 
						
							| 117 |  | breq1 | ⊢ ( 𝑦  =  - 𝑚  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  - 𝑚  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 118 | 117 | ralbidv | ⊢ ( 𝑦  =  - 𝑚  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∀ 𝑛  ∈  𝑍 - 𝑚  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 119 | 118 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑦  =  - 𝑚 )  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∀ 𝑛  ∈  𝑍 - 𝑚  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 120 | 110 46 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  - 𝑚  ∈  ℝ* ) | 
						
							| 121 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 122 | 121 109 114 56 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 123 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ∣  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  →  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 124 | 112 123 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  - 𝑚  <  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 125 | 120 122 124 | xrltled | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  ∧  𝑛  ∈  𝑍 )  →  - 𝑚  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 126 | 105 125 | ralrimia | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  ∀ 𝑛  ∈  𝑍 - 𝑚  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 127 | 116 119 126 | rspcedvd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 128 | 115 127 | rabidd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 129 | 128 6 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 130 | 99 18 101 129 | ssdf2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ⊆  𝐷 ) | 
						
							| 131 | 3 97 130 | iunssdf | ⊢ ( 𝜑  →  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 )  ⊆  𝐷 ) | 
						
							| 132 | 96 131 | eqssd | ⊢ ( 𝜑  →  𝐷  =  ∪  𝑚  ∈  ℕ ∩  𝑛  ∈  𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |