Step |
Hyp |
Ref |
Expression |
1 |
|
finfdm.1 |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
finfdm.2 |
⊢ Ⅎ 𝑥 𝜑 |
3 |
|
finfdm.3 |
⊢ Ⅎ 𝑚 𝜑 |
4 |
|
finfdm.4 |
⊢ Ⅎ 𝑥 𝐹 |
5 |
|
finfdm.5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) |
6 |
|
finfdm.6 |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
7 |
|
finfdm.7 |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 ℕ |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
10 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
11 |
8 10
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
12 |
9 11
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ 𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) |
13 |
7 12
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐻 |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑛 |
15 |
13 14
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑛 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
17 |
15 16
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
18 |
9 17
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
19 |
8 18
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
21 |
3 20
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
22 |
|
nfv |
⊢ Ⅎ 𝑚 𝑦 ∈ ℝ |
23 |
21 22
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) |
24 |
|
nfv |
⊢ Ⅎ 𝑚 ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) |
25 |
23 24
|
nfan |
⊢ Ⅎ 𝑚 ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
26 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
27 |
26
|
nfel2 |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
28 |
1 27
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
29 |
|
nfv |
⊢ Ⅎ 𝑛 𝑦 ∈ ℝ |
30 |
28 29
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) |
31 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) |
32 |
30 31
|
nfan |
⊢ Ⅎ 𝑛 ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
33 |
|
nfv |
⊢ Ⅎ 𝑛 𝑚 ∈ ℕ |
34 |
|
nfv |
⊢ Ⅎ 𝑛 - 𝑦 < 𝑚 |
35 |
32 33 34
|
nf3an |
⊢ Ⅎ 𝑛 ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) |
36 |
|
vex |
⊢ 𝑥 ∈ V |
37 |
36
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → 𝑥 ∈ V ) |
38 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
39 |
38
|
3ad2antl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
40 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
41 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
42 |
39 40 41
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
43 |
|
simpl2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑚 ∈ ℕ ) |
44 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
45 |
44
|
renegcld |
⊢ ( 𝑚 ∈ ℕ → - 𝑚 ∈ ℝ ) |
46 |
45
|
rexrd |
⊢ ( 𝑚 ∈ ℕ → - 𝑚 ∈ ℝ* ) |
47 |
43 46
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑚 ∈ ℝ* ) |
48 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ ) |
49 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
50 |
48 49
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ* ) |
51 |
50
|
3ad2antl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ* ) |
52 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
53 |
52
|
3ad2antl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
54 |
5
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ* ) |
55 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
56 |
54 55
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ* ) |
57 |
53 40 42 56
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ* ) |
58 |
48
|
3ad2antl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ ) |
59 |
|
simpl3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑦 < 𝑚 ) |
60 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → 𝑦 ∈ ℝ ) |
61 |
44
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → 𝑚 ∈ ℝ ) |
62 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → - 𝑦 < 𝑚 ) |
63 |
60 61 62
|
ltnegcon1d |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → - 𝑚 < 𝑦 ) |
64 |
58 43 59 63
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑚 < 𝑦 ) |
65 |
|
simpl1r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
66 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
67 |
65 40 66
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
68 |
47 51 57 64 67
|
xrltletrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
69 |
42 68
|
rabidd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
70 |
|
id |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍 ) |
71 |
|
nnex |
⊢ ℕ ∈ V |
72 |
71
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ∈ V |
73 |
72
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ∈ V ) |
74 |
7
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ∈ V ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) |
75 |
70 73 74
|
syl2anc |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝐻 ‘ 𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) |
76 |
4 14
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑛 ) |
77 |
76
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑛 ) |
78 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
79 |
78
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑛 ) ∈ V |
80 |
77 79
|
rabexf |
⊢ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ∈ V |
81 |
80
|
a1i |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ∈ V ) |
82 |
75 81
|
fvmpt2d |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) = { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
83 |
82
|
eqcomd |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
84 |
40 43 83
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
85 |
69 84
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
86 |
35 37 85
|
eliind2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
87 |
|
renegcl |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) |
88 |
87
|
archd |
⊢ ( 𝑦 ∈ ℝ → ∃ 𝑚 ∈ ℕ - 𝑦 < 𝑚 ) |
89 |
88
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ - 𝑦 < 𝑚 ) |
90 |
25 86 89
|
reximdd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
91 |
90
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ) |
92 |
91
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
93 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
94 |
92 93
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → 𝑥 ∈ ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
95 |
2 19 94
|
rabssd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ⊆ ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
96 |
6 95
|
eqsstrid |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
97 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐷 |
98 |
|
nfv |
⊢ Ⅎ 𝑥 𝑚 ∈ ℕ |
99 |
2 98
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
100 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
101 |
6 100
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
102 |
1 33
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑚 ∈ ℕ ) |
103 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
104 |
103
|
nfel2 |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) |
105 |
102 104
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
106 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
107 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
108 |
107
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |
109 |
70
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
110 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑚 ∈ ℕ ) |
111 |
109 110 82
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) = { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
112 |
108 111
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
113 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
114 |
112 113
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
115 |
105 106 114
|
eliind2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
116 |
45
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → - 𝑚 ∈ ℝ ) |
117 |
|
breq1 |
⊢ ( 𝑦 = - 𝑚 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ - 𝑚 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
118 |
117
|
ralbidv |
⊢ ( 𝑦 = - 𝑚 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑍 - 𝑚 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
119 |
118
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑦 = - 𝑚 ) → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑍 - 𝑚 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
120 |
110 46
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑚 ∈ ℝ* ) |
121 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
122 |
121 109 114 56
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ* ) |
123 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } → - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
124 |
112 123
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
125 |
120 122 124
|
xrltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑚 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
126 |
105 125
|
ralrimia |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → ∀ 𝑛 ∈ 𝑍 - 𝑚 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
127 |
116 119 126
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
128 |
115 127
|
rabidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
129 |
128 6
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ 𝐷 ) |
130 |
99 18 101 129
|
ssdf2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ⊆ 𝐷 ) |
131 |
3 97 130
|
iunssdf |
⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ⊆ 𝐷 ) |
132 |
96 131
|
eqssd |
⊢ ( 𝜑 → 𝐷 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑚 ) ) |