Metamath Proof Explorer


Theorem finfdm

Description: The domain of the inf function is defined in Proposition 121F (c) of Fremlin1, p. 39. See smfinf . Note that this definition of the inf function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fifth statement of Proposition 121H in Fremlin1, p. 39. (Contributed by Glauco Siliprandi, 1-Feb-2025)

Ref Expression
Hypotheses finfdm.1 𝑛 𝜑
finfdm.2 𝑥 𝜑
finfdm.3 𝑚 𝜑
finfdm.4 𝑥 𝐹
finfdm.5 ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ* )
finfdm.6 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
finfdm.7 𝐻 = ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
Assertion finfdm ( 𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )

Proof

Step Hyp Ref Expression
1 finfdm.1 𝑛 𝜑
2 finfdm.2 𝑥 𝜑
3 finfdm.3 𝑚 𝜑
4 finfdm.4 𝑥 𝐹
5 finfdm.5 ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ* )
6 finfdm.6 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
7 finfdm.7 𝐻 = ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
8 nfcv 𝑥
9 nfcv 𝑥 𝑍
10 nfrab1 𝑥 { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
11 8 10 nfmpt 𝑥 ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
12 9 11 nfmpt 𝑥 ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
13 7 12 nfcxfr 𝑥 𝐻
14 nfcv 𝑥 𝑛
15 13 14 nffv 𝑥 ( 𝐻𝑛 )
16 nfcv 𝑥 𝑚
17 15 16 nffv 𝑥 ( ( 𝐻𝑛 ) ‘ 𝑚 )
18 9 17 nfiin 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 )
19 8 18 nfiun 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 )
20 nfv 𝑚 𝑥 𝑛𝑍 dom ( 𝐹𝑛 )
21 3 20 nfan 𝑚 ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
22 nfv 𝑚 𝑦 ∈ ℝ
23 21 22 nfan 𝑚 ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ )
24 nfv 𝑚𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 )
25 23 24 nfan 𝑚 ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
26 nfii1 𝑛 𝑛𝑍 dom ( 𝐹𝑛 )
27 26 nfel2 𝑛 𝑥 𝑛𝑍 dom ( 𝐹𝑛 )
28 1 27 nfan 𝑛 ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
29 nfv 𝑛 𝑦 ∈ ℝ
30 28 29 nfan 𝑛 ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ )
31 nfra1 𝑛𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 )
32 30 31 nfan 𝑛 ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
33 nfv 𝑛 𝑚 ∈ ℕ
34 nfv 𝑛 - 𝑦 < 𝑚
35 32 33 34 nf3an 𝑛 ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 )
36 vex 𝑥 ∈ V
37 36 a1i ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → 𝑥 ∈ V )
38 simp-4r ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
39 38 3ad2antl1 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
40 simpr ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑛𝑍 )
41 eliinid ( ( 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
42 39 40 41 syl2anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
43 simpl2 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑚 ∈ ℕ )
44 nnre ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ )
45 44 renegcld ( 𝑚 ∈ ℕ → - 𝑚 ∈ ℝ )
46 45 rexrd ( 𝑚 ∈ ℕ → - 𝑚 ∈ ℝ* )
47 43 46 syl ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → - 𝑚 ∈ ℝ* )
48 simpllr ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → 𝑦 ∈ ℝ )
49 rexr ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* )
50 48 49 syl ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → 𝑦 ∈ ℝ* )
51 50 3ad2antl1 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑦 ∈ ℝ* )
52 simp-4l ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → 𝜑 )
53 52 3ad2antl1 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝜑 )
54 5 3adant3 ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ* )
55 simp3 ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
56 54 55 ffvelcdmd ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ* )
57 53 40 42 56 syl3anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ* )
58 48 3ad2antl1 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑦 ∈ ℝ )
59 simpl3 ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → - 𝑦 < 𝑚 )
60 simp1 ( ( 𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → 𝑦 ∈ ℝ )
61 44 3ad2ant2 ( ( 𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → 𝑚 ∈ ℝ )
62 simp3 ( ( 𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → - 𝑦 < 𝑚 )
63 60 61 62 ltnegcon1d ( ( 𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → - 𝑚 < 𝑦 )
64 58 43 59 63 syl3anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → - 𝑚 < 𝑦 )
65 simpl1r ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
66 rspa ( ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∧ 𝑛𝑍 ) → 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
67 65 40 66 syl2anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
68 47 51 57 64 67 xrltletrd ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
69 42 68 rabidd ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
70 id ( 𝑛𝑍𝑛𝑍 )
71 nnex ℕ ∈ V
72 71 mptex ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) ∈ V
73 72 a1i ( 𝑛𝑍 → ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) ∈ V )
74 7 fvmpt2 ( ( 𝑛𝑍 ∧ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) ∈ V ) → ( 𝐻𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
75 70 73 74 syl2anc ( 𝑛𝑍 → ( 𝐻𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
76 4 14 nffv 𝑥 ( 𝐹𝑛 )
77 76 nfdm 𝑥 dom ( 𝐹𝑛 )
78 fvex ( 𝐹𝑛 ) ∈ V
79 78 dmex dom ( 𝐹𝑛 ) ∈ V
80 77 79 rabexf { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ∈ V
81 80 a1i ( ( 𝑛𝑍𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ∈ V )
82 75 81 fvmpt2d ( ( 𝑛𝑍𝑚 ∈ ℕ ) → ( ( 𝐻𝑛 ) ‘ 𝑚 ) = { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
83 82 eqcomd ( ( 𝑛𝑍𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } = ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
84 40 43 83 syl2anc ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } = ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
85 69 84 eleqtrd ( ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
86 35 37 85 eliind2 ( ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ∧ - 𝑦 < 𝑚 ) → 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
87 renegcl ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ )
88 87 archd ( 𝑦 ∈ ℝ → ∃ 𝑚 ∈ ℕ - 𝑦 < 𝑚 )
89 88 ad2antlr ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ - 𝑦 < 𝑚 )
90 25 86 89 reximdd ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
91 90 rexlimdva2 ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) → ∃ 𝑚 ∈ ℕ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) )
92 91 3impia ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
93 eliun ( 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
94 92 93 sylibr ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
95 2 19 94 rabssd ( 𝜑 → { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ⊆ 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
96 6 95 eqsstrid ( 𝜑𝐷 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
97 nfcv 𝑚 𝐷
98 nfv 𝑥 𝑚 ∈ ℕ
99 2 98 nfan 𝑥 ( 𝜑𝑚 ∈ ℕ )
100 nfrab1 𝑥 { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
101 6 100 nfcxfr 𝑥 𝐷
102 1 33 nfan 𝑛 ( 𝜑𝑚 ∈ ℕ )
103 nfii1 𝑛 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 )
104 103 nfel2 𝑛 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 )
105 102 104 nfan 𝑛 ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
106 simpr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
107 eliinid ( ( 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
108 107 adantll ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
109 70 adantl ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑛𝑍 )
110 simpllr ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑚 ∈ ℕ )
111 109 110 82 syl2anc ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐻𝑛 ) ‘ 𝑚 ) = { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
112 108 111 eleqtrd ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
113 rabidim1 ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } → 𝑥 ∈ dom ( 𝐹𝑛 ) )
114 112 113 syl ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
115 105 106 114 eliind2 ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
116 45 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → - 𝑚 ∈ ℝ )
117 breq1 ( 𝑦 = - 𝑚 → ( 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ - 𝑚 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
118 117 ralbidv ( 𝑦 = - 𝑚 → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛𝑍 - 𝑚 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
119 118 adantl ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑦 = - 𝑚 ) → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛𝑍 - 𝑚 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
120 110 46 syl ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → - 𝑚 ∈ ℝ* )
121 simplll ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → 𝜑 )
122 121 109 114 56 syl3anc ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ* )
123 rabidim2 ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } → - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
124 112 123 syl ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
125 120 122 124 xrltled ( ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) ∧ 𝑛𝑍 ) → - 𝑚 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
126 105 125 ralrimia ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → ∀ 𝑛𝑍 - 𝑚 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
127 116 119 126 rspcedvd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
128 115 127 rabidd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
129 128 6 eleqtrrdi ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑥 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ) → 𝑥𝐷 )
130 99 18 101 129 ssdf2 ( ( 𝜑𝑚 ∈ ℕ ) → 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ⊆ 𝐷 )
131 3 97 130 iunssdf ( 𝜑 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ⊆ 𝐷 )
132 96 131 eqssd ( 𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )