Step |
Hyp |
Ref |
Expression |
1 |
|
finfdm.1 |
|
2 |
|
finfdm.2 |
|
3 |
|
finfdm.3 |
|
4 |
|
finfdm.4 |
|
5 |
|
finfdm.5 |
|
6 |
|
finfdm.6 |
|
7 |
|
finfdm.7 |
|
8 |
|
nfcv |
|
9 |
|
nfcv |
|
10 |
|
nfrab1 |
|
11 |
8 10
|
nfmpt |
|
12 |
9 11
|
nfmpt |
|
13 |
7 12
|
nfcxfr |
|
14 |
|
nfcv |
|
15 |
13 14
|
nffv |
|
16 |
|
nfcv |
|
17 |
15 16
|
nffv |
|
18 |
9 17
|
nfiin |
|
19 |
8 18
|
nfiun |
|
20 |
|
nfv |
|
21 |
3 20
|
nfan |
|
22 |
|
nfv |
|
23 |
21 22
|
nfan |
|
24 |
|
nfv |
|
25 |
23 24
|
nfan |
|
26 |
|
nfii1 |
|
27 |
26
|
nfel2 |
|
28 |
1 27
|
nfan |
|
29 |
|
nfv |
|
30 |
28 29
|
nfan |
|
31 |
|
nfra1 |
|
32 |
30 31
|
nfan |
|
33 |
|
nfv |
|
34 |
|
nfv |
|
35 |
32 33 34
|
nf3an |
|
36 |
|
vex |
|
37 |
36
|
a1i |
|
38 |
|
simp-4r |
|
39 |
38
|
3ad2antl1 |
|
40 |
|
simpr |
|
41 |
|
eliinid |
|
42 |
39 40 41
|
syl2anc |
|
43 |
|
simpl2 |
|
44 |
|
nnre |
|
45 |
44
|
renegcld |
|
46 |
45
|
rexrd |
|
47 |
43 46
|
syl |
|
48 |
|
simpllr |
|
49 |
|
rexr |
|
50 |
48 49
|
syl |
|
51 |
50
|
3ad2antl1 |
|
52 |
|
simp-4l |
|
53 |
52
|
3ad2antl1 |
|
54 |
5
|
3adant3 |
|
55 |
|
simp3 |
|
56 |
54 55
|
ffvelcdmd |
|
57 |
53 40 42 56
|
syl3anc |
|
58 |
48
|
3ad2antl1 |
|
59 |
|
simpl3 |
|
60 |
|
simp1 |
|
61 |
44
|
3ad2ant2 |
|
62 |
|
simp3 |
|
63 |
60 61 62
|
ltnegcon1d |
|
64 |
58 43 59 63
|
syl3anc |
|
65 |
|
simpl1r |
|
66 |
|
rspa |
|
67 |
65 40 66
|
syl2anc |
|
68 |
47 51 57 64 67
|
xrltletrd |
|
69 |
42 68
|
rabidd |
|
70 |
|
id |
|
71 |
|
nnex |
|
72 |
71
|
mptex |
|
73 |
72
|
a1i |
|
74 |
7
|
fvmpt2 |
|
75 |
70 73 74
|
syl2anc |
|
76 |
4 14
|
nffv |
|
77 |
76
|
nfdm |
|
78 |
|
fvex |
|
79 |
78
|
dmex |
|
80 |
77 79
|
rabexf |
|
81 |
80
|
a1i |
|
82 |
75 81
|
fvmpt2d |
|
83 |
82
|
eqcomd |
|
84 |
40 43 83
|
syl2anc |
|
85 |
69 84
|
eleqtrd |
|
86 |
35 37 85
|
eliind2 |
|
87 |
|
renegcl |
|
88 |
87
|
archd |
|
89 |
88
|
ad2antlr |
|
90 |
25 86 89
|
reximdd |
|
91 |
90
|
rexlimdva2 |
|
92 |
91
|
3impia |
|
93 |
|
eliun |
|
94 |
92 93
|
sylibr |
|
95 |
2 19 94
|
rabssd |
|
96 |
6 95
|
eqsstrid |
|
97 |
|
nfcv |
|
98 |
|
nfv |
|
99 |
2 98
|
nfan |
|
100 |
|
nfrab1 |
|
101 |
6 100
|
nfcxfr |
|
102 |
1 33
|
nfan |
|
103 |
|
nfii1 |
|
104 |
103
|
nfel2 |
|
105 |
102 104
|
nfan |
|
106 |
|
simpr |
|
107 |
|
eliinid |
|
108 |
107
|
adantll |
|
109 |
70
|
adantl |
|
110 |
|
simpllr |
|
111 |
109 110 82
|
syl2anc |
|
112 |
108 111
|
eleqtrd |
|
113 |
|
rabidim1 |
|
114 |
112 113
|
syl |
|
115 |
105 106 114
|
eliind2 |
|
116 |
45
|
ad2antlr |
|
117 |
|
breq1 |
|
118 |
117
|
ralbidv |
|
119 |
118
|
adantl |
|
120 |
110 46
|
syl |
|
121 |
|
simplll |
|
122 |
121 109 114 56
|
syl3anc |
|
123 |
|
rabidim2 |
|
124 |
112 123
|
syl |
|
125 |
120 122 124
|
xrltled |
|
126 |
105 125
|
ralrimia |
|
127 |
116 119 126
|
rspcedvd |
|
128 |
115 127
|
rabidd |
|
129 |
128 6
|
eleqtrrdi |
|
130 |
99 18 101 129
|
ssdf2 |
|
131 |
3 97 130
|
iunssdf |
|
132 |
96 131
|
eqssd |
|