Metamath Proof Explorer


Theorem smfinf

Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfinf.n _ n F
smfinf.x _ x F
smfinf.m φ M
smfinf.z Z = M
smfinf.s φ S SAlg
smfinf.f φ F : Z SMblFn S
smfinf.d D = x n Z dom F n | y n Z y F n x
smfinf.g G = x D sup ran n Z F n x <
Assertion smfinf φ G SMblFn S

Proof

Step Hyp Ref Expression
1 smfinf.n _ n F
2 smfinf.x _ x F
3 smfinf.m φ M
4 smfinf.z Z = M
5 smfinf.s φ S SAlg
6 smfinf.f φ F : Z SMblFn S
7 smfinf.d D = x n Z dom F n | y n Z y F n x
8 smfinf.g G = x D sup ran n Z F n x <
9 nfcv _ w n Z dom F n
10 nfcv _ x Z
11 nfcv _ x m
12 2 11 nffv _ x F m
13 12 nfdm _ x dom F m
14 10 13 nfiin _ x m Z dom F m
15 nfv w y n Z y F n x
16 nfcv _ x
17 nfcv _ x z
18 nfcv _ x
19 nfcv _ x w
20 12 19 nffv _ x F m w
21 17 18 20 nfbr x z F m w
22 10 21 nfralw x m Z z F m w
23 16 22 nfrex x z m Z z F m w
24 nfcv _ m dom F n
25 nfcv _ n m
26 1 25 nffv _ n F m
27 26 nfdm _ n dom F m
28 fveq2 n = m F n = F m
29 28 dmeqd n = m dom F n = dom F m
30 24 27 29 cbviin n Z dom F n = m Z dom F m
31 30 a1i x = w n Z dom F n = m Z dom F m
32 fveq2 x = w F n x = F n w
33 32 breq2d x = w y F n x y F n w
34 33 ralbidv x = w n Z y F n x n Z y F n w
35 nfv m y F n w
36 nfcv _ n y
37 nfcv _ n
38 nfcv _ n w
39 26 38 nffv _ n F m w
40 36 37 39 nfbr n y F m w
41 28 fveq1d n = m F n w = F m w
42 41 breq2d n = m y F n w y F m w
43 35 40 42 cbvralw n Z y F n w m Z y F m w
44 43 a1i x = w n Z y F n w m Z y F m w
45 34 44 bitrd x = w n Z y F n x m Z y F m w
46 45 rexbidv x = w y n Z y F n x y m Z y F m w
47 breq1 y = z y F m w z F m w
48 47 ralbidv y = z m Z y F m w m Z z F m w
49 48 cbvrexvw y m Z y F m w z m Z z F m w
50 49 a1i x = w y m Z y F m w z m Z z F m w
51 46 50 bitrd x = w y n Z y F n x z m Z z F m w
52 9 14 15 23 31 51 cbvrabcsfw x n Z dom F n | y n Z y F n x = w m Z dom F m | z m Z z F m w
53 7 52 eqtri D = w m Z dom F m | z m Z z F m w
54 nfrab1 _ x x n Z dom F n | y n Z y F n x
55 7 54 nfcxfr _ x D
56 nfcv _ w D
57 nfcv _ w sup ran n Z F n x <
58 10 20 nfmpt _ x m Z F m w
59 58 nfrn _ x ran m Z F m w
60 nfcv _ x <
61 59 16 60 nfinf _ x sup ran m Z F m w <
62 32 mpteq2dv x = w n Z F n x = n Z F n w
63 nfcv _ m F n w
64 63 39 41 cbvmpt n Z F n w = m Z F m w
65 64 a1i x = w n Z F n w = m Z F m w
66 62 65 eqtrd x = w n Z F n x = m Z F m w
67 66 rneqd x = w ran n Z F n x = ran m Z F m w
68 67 infeq1d x = w sup ran n Z F n x < = sup ran m Z F m w <
69 55 56 57 61 68 cbvmptf x D sup ran n Z F n x < = w D sup ran m Z F m w <
70 8 69 eqtri G = w D sup ran m Z F m w <
71 3 4 5 6 53 70 smfinflem φ G SMblFn S