Metamath Proof Explorer


Theorem smfinf

Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfinf.n 𝑛 𝐹
smfinf.x 𝑥 𝐹
smfinf.m ( 𝜑𝑀 ∈ ℤ )
smfinf.z 𝑍 = ( ℤ𝑀 )
smfinf.s ( 𝜑𝑆 ∈ SAlg )
smfinf.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfinf.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
smfinf.g 𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
Assertion smfinf ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfinf.n 𝑛 𝐹
2 smfinf.x 𝑥 𝐹
3 smfinf.m ( 𝜑𝑀 ∈ ℤ )
4 smfinf.z 𝑍 = ( ℤ𝑀 )
5 smfinf.s ( 𝜑𝑆 ∈ SAlg )
6 smfinf.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
7 smfinf.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
8 smfinf.g 𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
9 nfcv 𝑤 𝑛𝑍 dom ( 𝐹𝑛 )
10 nfcv 𝑥 𝑍
11 nfcv 𝑥 𝑚
12 2 11 nffv 𝑥 ( 𝐹𝑚 )
13 12 nfdm 𝑥 dom ( 𝐹𝑚 )
14 10 13 nfiin 𝑥 𝑚𝑍 dom ( 𝐹𝑚 )
15 nfv 𝑤𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 )
16 nfcv 𝑥
17 nfcv 𝑥 𝑧
18 nfcv 𝑥
19 nfcv 𝑥 𝑤
20 12 19 nffv 𝑥 ( ( 𝐹𝑚 ) ‘ 𝑤 )
21 17 18 20 nfbr 𝑥 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 )
22 10 21 nfralw 𝑥𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 )
23 16 22 nfrex 𝑥𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 )
24 nfcv 𝑚 dom ( 𝐹𝑛 )
25 nfcv 𝑛 𝑚
26 1 25 nffv 𝑛 ( 𝐹𝑚 )
27 26 nfdm 𝑛 dom ( 𝐹𝑚 )
28 fveq2 ( 𝑛 = 𝑚 → ( 𝐹𝑛 ) = ( 𝐹𝑚 ) )
29 28 dmeqd ( 𝑛 = 𝑚 → dom ( 𝐹𝑛 ) = dom ( 𝐹𝑚 ) )
30 24 27 29 cbviin 𝑛𝑍 dom ( 𝐹𝑛 ) = 𝑚𝑍 dom ( 𝐹𝑚 )
31 30 a1i ( 𝑥 = 𝑤 𝑛𝑍 dom ( 𝐹𝑛 ) = 𝑚𝑍 dom ( 𝐹𝑚 ) )
32 fveq2 ( 𝑥 = 𝑤 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑤 ) )
33 32 breq2d ( 𝑥 = 𝑤 → ( 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) )
34 33 ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) )
35 nfv 𝑚 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 )
36 nfcv 𝑛 𝑦
37 nfcv 𝑛
38 nfcv 𝑛 𝑤
39 26 38 nffv 𝑛 ( ( 𝐹𝑚 ) ‘ 𝑤 )
40 36 37 39 nfbr 𝑛 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 )
41 28 fveq1d ( 𝑛 = 𝑚 → ( ( 𝐹𝑛 ) ‘ 𝑤 ) = ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
42 41 breq2d ( 𝑛 = 𝑚 → ( 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ↔ 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
43 35 40 42 cbvralw ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
44 43 a1i ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
45 34 44 bitrd ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
46 45 rexbidv ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
47 breq1 ( 𝑦 = 𝑧 → ( 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
48 47 ralbidv ( 𝑦 = 𝑧 → ( ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
49 48 cbvrexvw ( ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
50 49 a1i ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
51 46 50 bitrd ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
52 9 14 15 23 31 51 cbvrabcsfw { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } = { 𝑤 𝑚𝑍 dom ( 𝐹𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) }
53 7 52 eqtri 𝐷 = { 𝑤 𝑚𝑍 dom ( 𝐹𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) }
54 nfrab1 𝑥 { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
55 7 54 nfcxfr 𝑥 𝐷
56 nfcv 𝑤 𝐷
57 nfcv 𝑤 inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < )
58 10 20 nfmpt 𝑥 ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
59 58 nfrn 𝑥 ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
60 nfcv 𝑥 <
61 59 16 60 nfinf 𝑥 inf ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < )
62 32 mpteq2dv ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) )
63 nfcv 𝑚 ( ( 𝐹𝑛 ) ‘ 𝑤 )
64 63 39 41 cbvmpt ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
65 64 a1i ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
66 62 65 eqtrd ( 𝑥 = 𝑤 → ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
67 66 rneqd ( 𝑥 = 𝑤 → ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
68 67 infeq1d ( 𝑥 = 𝑤 → inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = inf ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
69 55 56 57 61 68 cbvmptf ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑤𝐷 ↦ inf ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
70 8 69 eqtri 𝐺 = ( 𝑤𝐷 ↦ inf ( ran ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) )
71 3 4 5 6 53 70 smfinflem ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )