| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfinf.n |
⊢ Ⅎ 𝑛 𝐹 |
| 2 |
|
smfinf.x |
⊢ Ⅎ 𝑥 𝐹 |
| 3 |
|
smfinf.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
smfinf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
smfinf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 6 |
|
smfinf.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 7 |
|
smfinf.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
| 8 |
|
smfinf.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑤 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
| 12 |
2 11
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
| 13 |
12
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑚 ) |
| 14 |
10 13
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
| 20 |
12 19
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 21 |
17 18 20
|
nfbr |
⊢ Ⅎ 𝑥 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 22 |
10 21
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 23 |
16 22
|
nfrexw |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑚 dom ( 𝐹 ‘ 𝑛 ) |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑚 |
| 26 |
1 25
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) |
| 27 |
26
|
nfdm |
⊢ Ⅎ 𝑛 dom ( 𝐹 ‘ 𝑚 ) |
| 28 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 29 |
28
|
dmeqd |
⊢ ( 𝑛 = 𝑚 → dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑚 ) ) |
| 30 |
24 27 29
|
cbviin |
⊢ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
| 31 |
30
|
a1i |
⊢ ( 𝑥 = 𝑤 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ) |
| 32 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
| 33 |
32
|
breq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
| 34 |
33
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
| 35 |
|
nfv |
⊢ Ⅎ 𝑚 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑦 |
| 37 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
| 38 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑤 |
| 39 |
26 38
|
nffv |
⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 40 |
36 37 39
|
nfbr |
⊢ Ⅎ 𝑛 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 41 |
28
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 42 |
41
|
breq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 43 |
35 40 42
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 44 |
43
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 45 |
34 44
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 46 |
45
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 47 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 48 |
47
|
ralbidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 49 |
48
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 50 |
49
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 51 |
46 50
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 52 |
9 14 15 23 31 51
|
cbvrabcsfw |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } |
| 53 |
7 52
|
eqtri |
⊢ 𝐷 = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } |
| 54 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
| 55 |
7 54
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐷 |
| 57 |
|
nfcv |
⊢ Ⅎ 𝑤 inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) |
| 58 |
10 20
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 59 |
58
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 60 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 61 |
59 16 60
|
nfinf |
⊢ Ⅎ 𝑥 inf ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) |
| 62 |
32
|
mpteq2dv |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) |
| 64 |
63 39 41
|
cbvmpt |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 65 |
64
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 66 |
62 65
|
eqtrd |
⊢ ( 𝑥 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 67 |
66
|
rneqd |
⊢ ( 𝑥 = 𝑤 → ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 68 |
67
|
infeq1d |
⊢ ( 𝑥 = 𝑤 → inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = inf ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
| 69 |
55 56 57 61 68
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑤 ∈ 𝐷 ↦ inf ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
| 70 |
8 69
|
eqtri |
⊢ 𝐺 = ( 𝑤 ∈ 𝐷 ↦ inf ( ran ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) , ℝ , < ) ) |
| 71 |
3 4 5 6 53 70
|
smfinflem |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |