| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfinf.n | ⊢ Ⅎ 𝑛 𝐹 | 
						
							| 2 |  | smfinf.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 3 |  | smfinf.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | smfinf.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | smfinf.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 6 |  | smfinf.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smfinf.d | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | 
						
							| 8 |  | smfinf.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  inf ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑤 ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 𝑚 | 
						
							| 12 | 2 11 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) | 
						
							| 13 | 12 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 14 | 10 13 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑤 ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑥  ≤ | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 20 | 12 19 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 21 | 17 18 20 | nfbr | ⊢ Ⅎ 𝑥 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 22 | 10 21 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 23 | 16 22 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑚 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑛 𝑚 | 
						
							| 26 | 1 25 | nffv | ⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) | 
						
							| 27 | 26 | nfdm | ⊢ Ⅎ 𝑛 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 29 | 28 | dmeqd | ⊢ ( 𝑛  =  𝑚  →  dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 30 | 24 27 29 | cbviin | ⊢ ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  =  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝑥  =  𝑤  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  =  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) | 
						
							| 33 | 32 | breq2d | ⊢ ( 𝑥  =  𝑤  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) | 
						
							| 34 | 33 | ralbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) | 
						
							| 35 |  | nfv | ⊢ Ⅎ 𝑚 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑛 𝑦 | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑛  ≤ | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑛 𝑤 | 
						
							| 39 | 26 38 | nffv | ⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 40 | 36 37 39 | nfbr | ⊢ Ⅎ 𝑛 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 41 | 28 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 42 | 41 | breq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ↔  𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 43 | 35 40 42 | cbvralw | ⊢ ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ↔  ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 44 | 43 | a1i | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ↔  ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 45 | 34 44 | bitrd | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 46 | 45 | rexbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 47 |  | breq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 48 | 47 | ralbidv | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 49 | 48 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 50 | 49 | a1i | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 51 | 46 50 | bitrd | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 52 | 9 14 15 23 31 51 | cbvrabcsfw | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  =  { 𝑤  ∈  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } | 
						
							| 53 | 7 52 | eqtri | ⊢ 𝐷  =  { 𝑤  ∈  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } | 
						
							| 54 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | 
						
							| 55 | 7 54 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 56 |  | nfcv | ⊢ Ⅎ 𝑤 𝐷 | 
						
							| 57 |  | nfcv | ⊢ Ⅎ 𝑤 inf ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) | 
						
							| 58 | 10 20 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 59 | 58 | nfrn | ⊢ Ⅎ 𝑥 ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 61 | 59 16 60 | nfinf | ⊢ Ⅎ 𝑥 inf ( ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ,  ℝ ,   <  ) | 
						
							| 62 | 32 | mpteq2dv | ⊢ ( 𝑥  =  𝑤  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) | 
						
							| 63 |  | nfcv | ⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) | 
						
							| 64 | 63 39 41 | cbvmpt | ⊢ ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 65 | 64 | a1i | ⊢ ( 𝑥  =  𝑤  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 66 | 62 65 | eqtrd | ⊢ ( 𝑥  =  𝑤  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 67 | 66 | rneqd | ⊢ ( 𝑥  =  𝑤  →  ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 68 | 67 | infeq1d | ⊢ ( 𝑥  =  𝑤  →  inf ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  inf ( ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ,  ℝ ,   <  ) ) | 
						
							| 69 | 55 56 57 61 68 | cbvmptf | ⊢ ( 𝑥  ∈  𝐷  ↦  inf ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑤  ∈  𝐷  ↦  inf ( ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ,  ℝ ,   <  ) ) | 
						
							| 70 | 8 69 | eqtri | ⊢ 𝐺  =  ( 𝑤  ∈  𝐷  ↦  inf ( ran  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ,  ℝ ,   <  ) ) | 
						
							| 71 | 3 4 5 6 53 70 | smfinflem | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |