| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfinflem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
smfinflem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
smfinflem.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smfinflem.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
smfinflem.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
| 6 |
|
smfinflem.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
| 9 |
1 2
|
uzn0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑍 ≠ ∅ ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 12 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 13 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑛 ) |
| 14 |
11 12 13
|
smff |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
| 15 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
| 16 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 17 |
5
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
| 18 |
17
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
| 19 |
16 18
|
sselid |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 22 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 23 |
20 21 22
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 24 |
23
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 25 |
15 24
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 26 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 27 |
18 26
|
syl |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 29 |
8 10 25 28
|
infnsuprnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 30 |
29
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ 𝐷 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 31 |
7 30
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 32 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 33 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
| 34 |
33
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑛 ) ∈ V |
| 35 |
34
|
rgenw |
⊢ ∀ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
| 37 |
9 36
|
iinexd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
| 38 |
5 37
|
rabexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 39 |
25
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 40 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 41 |
40
|
breq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 42 |
41
|
ralbidv |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 43 |
42
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 44 |
|
nfcv |
⊢ Ⅎ 𝑤 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 45 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
| 47 |
46
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑚 ) |
| 48 |
45 47
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
| 49 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) |
| 50 |
|
nfv |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑚 dom ( 𝐹 ‘ 𝑛 ) |
| 52 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) |
| 53 |
52
|
nfdm |
⊢ Ⅎ 𝑛 dom ( 𝐹 ‘ 𝑚 ) |
| 54 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 55 |
54
|
dmeqd |
⊢ ( 𝑛 = 𝑚 → dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑚 ) ) |
| 56 |
51 53 55
|
cbviin |
⊢ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
| 57 |
56
|
a1i |
⊢ ( 𝑥 = 𝑤 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
| 59 |
58
|
breq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
| 60 |
59
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
| 61 |
|
nfv |
⊢ Ⅎ 𝑚 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) |
| 62 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑦 |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑤 |
| 65 |
52 64
|
nffv |
⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 66 |
62 63 65
|
nfbr |
⊢ Ⅎ 𝑛 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
| 67 |
54
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 68 |
67
|
breq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 69 |
61 66 68
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 70 |
69
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 71 |
60 70
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 72 |
71
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 73 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 74 |
73
|
ralbidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 75 |
74
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 76 |
75
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 77 |
72 76
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
| 78 |
44 48 49 50 57 77
|
cbvrabcsfw |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } |
| 79 |
5 78
|
eqtri |
⊢ 𝐷 = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } |
| 80 |
43 79
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 81 |
80
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝑥 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 82 |
81
|
simprd |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 84 |
|
renegcl |
⊢ ( 𝑧 ∈ ℝ → - 𝑧 ∈ ℝ ) |
| 85 |
84
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) → - 𝑧 ∈ ℝ ) |
| 86 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 87 |
86
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 88 |
87
|
breq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ↔ 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 89 |
88
|
rspcva |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) → 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 90 |
89
|
ancoms |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 91 |
90
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 92 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑧 ∈ ℝ ) |
| 93 |
25
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 94 |
92 93
|
lenegd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) ) |
| 95 |
91 94
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) |
| 96 |
95
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) → ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) |
| 97 |
|
brralrspcev |
⊢ ( ( - 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 98 |
85 96 97
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 99 |
98
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 100 |
83 99
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 101 |
8 10 39 100
|
suprclrnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
| 102 |
5
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
| 103 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 104 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 |
| 105 |
|
renegcl |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) |
| 106 |
105
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → - 𝑦 ∈ ℝ ) |
| 107 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 108 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
| 109 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 110 |
108 109
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 111 |
107 110
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 112 |
62
|
nfel1 |
⊢ Ⅎ 𝑛 𝑦 ∈ ℝ |
| 113 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) |
| 114 |
111 112 113
|
nf3an |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 115 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ ) |
| 116 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
| 117 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 118 |
22
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 119 |
14
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
| 120 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 121 |
119 120
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 122 |
116 117 118 121
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 123 |
122
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 124 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 125 |
124
|
3ad2antl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 126 |
|
leneg |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) ) |
| 127 |
126
|
biimp3a |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) |
| 128 |
115 123 125 127
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) |
| 129 |
128
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ( 𝑛 ∈ 𝑍 → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) ) |
| 130 |
114 129
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) |
| 131 |
|
brralrspcev |
⊢ ( ( - 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
| 132 |
106 130 131
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
| 133 |
132
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( 𝑦 ∈ ℝ → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ) ) |
| 134 |
103 104 133
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ) |
| 135 |
84
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ∈ ℝ ) |
| 136 |
|
nfv |
⊢ Ⅎ 𝑛 𝑧 ∈ ℝ |
| 137 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 |
| 138 |
111 136 137
|
nf3an |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
| 139 |
122
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 140 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑧 ∈ ℝ ) |
| 141 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
| 142 |
141
|
3ad2antl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
| 143 |
|
simp3 |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
| 144 |
|
renegcl |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 145 |
144
|
adantr |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 146 |
|
simpr |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) |
| 147 |
|
leneg |
⊢ ( ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 148 |
145 146 147
|
syl2anc |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 149 |
148
|
3adant3 |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 150 |
143 149
|
mpbid |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ≤ - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 151 |
|
recn |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 152 |
151
|
negnegd |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ → - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 153 |
152
|
3ad2ant1 |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 154 |
150 153
|
breqtrd |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 155 |
139 140 142 154
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 156 |
155
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ( 𝑛 ∈ 𝑍 → - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 157 |
138 156
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ∀ 𝑛 ∈ 𝑍 - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 158 |
|
breq1 |
⊢ ( 𝑦 = - 𝑧 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 159 |
158
|
ralbidv |
⊢ ( 𝑦 = - 𝑧 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑍 - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 160 |
159
|
rspcev |
⊢ ( ( - 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 161 |
135 157 160
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 162 |
161
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( 𝑧 ∈ ℝ → ( ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
| 163 |
162
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 164 |
134 163
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ) |
| 165 |
32 164
|
rabbida |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ) |
| 166 |
102 165
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ) |
| 167 |
32 166
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑥 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ) |
| 168 |
|
eqid |
⊢ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) |
| 169 |
168
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐷 sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) |
| 170 |
169
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 171 |
|
mpteq12f |
⊢ ( ( ∀ 𝑥 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ∧ ∀ 𝑥 ∈ 𝐷 sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) → ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 172 |
167 170 171
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 173 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 174 |
121
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 175 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 176 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
| 177 |
121
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 178 |
14
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 179 |
178
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
| 180 |
179 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 181 |
175 11 176 177 180
|
smfneg |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 182 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } |
| 183 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 184 |
107 32 173 1 2 3 174 181 182 183
|
smfsupmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 185 |
172 184
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 186 |
32 3 38 101 185
|
smfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 187 |
31 186
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |