| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfinflem.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smfinflem.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smfinflem.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfinflem.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfinflem.d | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | 
						
							| 6 |  | smfinflem.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  inf ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐷  ↦  inf ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝐷 ) | 
						
							| 9 | 1 2 | uzn0d | ⊢ ( 𝜑  →  𝑍  ≠  ∅ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑍  ≠  ∅ ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 12 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 13 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 14 | 11 12 13 | smff | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 15 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 16 |  | ssrab2 | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  ⊆  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 17 | 5 | eleq2i | ⊢ ( 𝑥  ∈  𝐷  ↔  𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 18 | 17 | biimpi | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 19 | 16 18 | sselid | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 22 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 23 | 20 21 22 | syl2anc | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 24 | 23 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 25 | 15 24 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 26 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 27 | 18 26 | syl | ⊢ ( 𝑥  ∈  𝐷  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 29 | 8 10 25 28 | infnsuprnmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  inf ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  - sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 30 | 29 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  inf ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  𝐷  ↦  - sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 31 | 7 30 | eqtrd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐷  ↦  - sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 33 |  | fvex | ⊢ ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 34 | 33 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 35 | 34 | rgenw | ⊢ ∀ 𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∈  V ) | 
						
							| 37 | 9 36 | iinexd | ⊢ ( 𝜑  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∈  V ) | 
						
							| 38 | 5 37 | rabexd | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 39 | 25 | renegcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 41 | 40 | breq2d | ⊢ ( 𝑤  =  𝑥  →  ( 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 42 | 41 | ralbidv | ⊢ ( 𝑤  =  𝑥  →  ( ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 43 | 42 | rexbidv | ⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 44 |  | nfcv | ⊢ Ⅎ 𝑤 ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 46 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) | 
						
							| 47 | 46 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 48 | 45 47 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 49 |  | nfv | ⊢ Ⅎ 𝑤 ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑥 ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 51 |  | nfcv | ⊢ Ⅎ 𝑚 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 52 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) | 
						
							| 53 | 52 | nfdm | ⊢ Ⅎ 𝑛 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 54 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 55 | 54 | dmeqd | ⊢ ( 𝑛  =  𝑚  →  dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 56 | 51 53 55 | cbviin | ⊢ ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  =  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 57 | 56 | a1i | ⊢ ( 𝑥  =  𝑤  →  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  =  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) | 
						
							| 59 | 58 | breq2d | ⊢ ( 𝑥  =  𝑤  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) | 
						
							| 60 | 59 | ralbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) | 
						
							| 61 |  | nfv | ⊢ Ⅎ 𝑚 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) | 
						
							| 62 |  | nfcv | ⊢ Ⅎ 𝑛 𝑦 | 
						
							| 63 |  | nfcv | ⊢ Ⅎ 𝑛  ≤ | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑛 𝑤 | 
						
							| 65 | 52 64 | nffv | ⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 66 | 62 63 65 | nfbr | ⊢ Ⅎ 𝑛 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) | 
						
							| 67 | 54 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 68 | 67 | breq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ↔  𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 69 | 61 66 68 | cbvralw | ⊢ ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ↔  ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 70 | 69 | a1i | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 )  ↔  ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 71 | 60 70 | bitrd | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 72 | 71 | rexbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 73 |  | breq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 74 | 73 | ralbidv | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 75 | 74 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) | 
						
							| 76 | 75 | a1i | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 )  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 77 | 72 76 | bitrd | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) | 
						
							| 78 | 44 48 49 50 57 77 | cbvrabcsfw | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  =  { 𝑤  ∈  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } | 
						
							| 79 | 5 78 | eqtri | ⊢ 𝐷  =  { 𝑤  ∈  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } | 
						
							| 80 | 43 79 | elrab2 | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 )  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 81 | 80 | biimpi | ⊢ ( 𝑥  ∈  𝐷  →  ( 𝑥  ∈  ∩  𝑚  ∈  𝑍 dom  ( 𝐹 ‘ 𝑚 )  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 82 | 81 | simprd | ⊢ ( 𝑥  ∈  𝐷  →  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 84 |  | renegcl | ⊢ ( 𝑧  ∈  ℝ  →  - 𝑧  ∈  ℝ ) | 
						
							| 85 | 84 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  →  - 𝑧  ∈  ℝ ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 87 | 86 | fveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 88 | 87 | breq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ↔  𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 89 | 88 | rspcva | ⊢ ( ( 𝑛  ∈  𝑍  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  →  𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 90 | 89 | ancoms | ⊢ ( ( ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∧  𝑛  ∈  𝑍 )  →  𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 91 | 90 | adantll | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 92 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑧  ∈  ℝ ) | 
						
							| 93 | 25 | ad4ant14 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 94 | 92 93 | lenegd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  ( 𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑧 ) ) | 
						
							| 95 | 91 94 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑧 ) | 
						
							| 96 | 95 | ralrimiva | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  →  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑧 ) | 
						
							| 97 |  | brralrspcev | ⊢ ( ( - 𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑧 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 98 | 85 96 97 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 99 | 98 | rexlimdva2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑚  ∈  𝑍 𝑧  ≤  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 100 | 83 99 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 101 | 8 10 39 100 | suprclrnmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 102 | 5 | a1i | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | 
						
							| 103 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 104 |  | nfv | ⊢ Ⅎ 𝑦 ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 | 
						
							| 105 |  | renegcl | ⊢ ( 𝑦  ∈  ℝ  →  - 𝑦  ∈  ℝ ) | 
						
							| 106 | 105 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  - 𝑦  ∈  ℝ ) | 
						
							| 107 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 108 |  | nfcv | ⊢ Ⅎ 𝑛 𝑥 | 
						
							| 109 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 110 | 108 109 | nfel | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 111 | 107 110 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 112 | 62 | nfel1 | ⊢ Ⅎ 𝑛 𝑦  ∈  ℝ | 
						
							| 113 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) | 
						
							| 114 | 111 112 113 | nf3an | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 115 |  | simpl2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ∈  ℝ ) | 
						
							| 116 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑛  ∈  𝑍 )  →  𝜑 ) | 
						
							| 117 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 118 | 22 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 119 | 14 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 120 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 121 | 119 120 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 122 | 116 117 118 121 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 123 | 122 | 3ad2antl1 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 124 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 125 | 124 | 3ad2antl3 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 126 |  | leneg | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ )  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑦 ) ) | 
						
							| 127 | 126 | biimp3a | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑦 ) | 
						
							| 128 | 115 123 125 127 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∧  𝑛  ∈  𝑍 )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑦 ) | 
						
							| 129 | 128 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  ( 𝑛  ∈  𝑍  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑦 ) ) | 
						
							| 130 | 114 129 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑦 ) | 
						
							| 131 |  | brralrspcev | ⊢ ( ( - 𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  - 𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) | 
						
							| 132 | 106 130 131 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑦  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) | 
						
							| 133 | 132 | 3exp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  ( 𝑦  ∈  ℝ  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) ) ) | 
						
							| 134 | 103 104 133 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) ) | 
						
							| 135 | 84 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  - 𝑧  ∈  ℝ ) | 
						
							| 136 |  | nfv | ⊢ Ⅎ 𝑛 𝑧  ∈  ℝ | 
						
							| 137 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 | 
						
							| 138 | 111 136 137 | nf3an | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) | 
						
							| 139 | 122 | 3ad2antl1 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 140 |  | simpl2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  ∧  𝑛  ∈  𝑍 )  →  𝑧  ∈  ℝ ) | 
						
							| 141 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧  ∧  𝑛  ∈  𝑍 )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) | 
						
							| 142 | 141 | 3ad2antl3 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  ∧  𝑛  ∈  𝑍 )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) | 
						
							| 143 |  | simp3 | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) | 
						
							| 144 |  | renegcl | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 145 | 144 | adantr | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 146 |  | simpr | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ℝ ) | 
						
							| 147 |  | leneg | ⊢ ( ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧  ↔  - 𝑧  ≤  - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 148 | 145 146 147 | syl2anc | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧  ↔  - 𝑧  ≤  - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 149 | 148 | 3adant3 | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧  ↔  - 𝑧  ≤  - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 150 | 143 149 | mpbid | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  - 𝑧  ≤  - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 151 |  | recn | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 152 | 151 | negnegd | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  →  - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 153 | 152 | 3ad2ant1 | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 154 | 150 153 | breqtrd | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  - 𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 155 | 139 140 142 154 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  ∧  𝑛  ∈  𝑍 )  →  - 𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 156 | 155 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  ( 𝑛  ∈  𝑍  →  - 𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 157 | 138 156 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  ∀ 𝑛  ∈  𝑍 - 𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 158 |  | breq1 | ⊢ ( 𝑦  =  - 𝑧  →  ( 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  - 𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 159 | 158 | ralbidv | ⊢ ( 𝑦  =  - 𝑧  →  ( ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∀ 𝑛  ∈  𝑍 - 𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 160 | 159 | rspcev | ⊢ ( ( - 𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - 𝑧  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 161 | 135 157 160 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑧  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 162 | 161 | 3exp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  ( 𝑧  ∈  ℝ  →  ( ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) | 
						
							| 163 | 162 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 164 | 134 163 | impbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ↔  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 ) ) | 
						
							| 165 | 32 164 | rabbida | ⊢ ( 𝜑  →  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 𝑦  ≤  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 } ) | 
						
							| 166 | 102 165 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 } ) | 
						
							| 167 | 32 166 | alrimi | ⊢ ( 𝜑  →  ∀ 𝑥 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 } ) | 
						
							| 168 |  | eqid | ⊢ sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) | 
						
							| 169 | 168 | rgenw | ⊢ ∀ 𝑥  ∈  𝐷 sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) | 
						
							| 170 | 169 | a1i | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐷 sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 171 |  | mpteq12f | ⊢ ( ( ∀ 𝑥 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 }  ∧  ∀ 𝑥  ∈  𝐷 sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  →  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 172 | 167 170 171 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 173 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 174 | 121 | renegcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 175 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑛  ∈  𝑍 ) | 
						
							| 176 | 34 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  dom  ( 𝐹 ‘ 𝑛 )  ∈  V ) | 
						
							| 177 | 121 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 178 | 14 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 179 | 178 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 180 | 179 12 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 181 | 175 11 176 177 180 | smfneg | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 )  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 182 |  | eqid | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 }  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 } | 
						
							| 183 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 184 | 107 32 173 1 2 3 174 181 182 183 | smfsupmpt | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑧  ∈  ℝ ∀ 𝑛  ∈  𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑧 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 185 | 172 184 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 186 | 32 3 38 101 185 | smfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  - sup ( ran  ( 𝑛  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 187 | 31 186 | eqeltrd | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |