Metamath Proof Explorer


Theorem smfinflem

Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfinflem.m ( 𝜑𝑀 ∈ ℤ )
smfinflem.z 𝑍 = ( ℤ𝑀 )
smfinflem.s ( 𝜑𝑆 ∈ SAlg )
smfinflem.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfinflem.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
smfinflem.g 𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
Assertion smfinflem ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfinflem.m ( 𝜑𝑀 ∈ ℤ )
2 smfinflem.z 𝑍 = ( ℤ𝑀 )
3 smfinflem.s ( 𝜑𝑆 ∈ SAlg )
4 smfinflem.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
5 smfinflem.d 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
6 smfinflem.g 𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
7 6 a1i ( 𝜑𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) )
8 nfv 𝑛 ( 𝜑𝑥𝐷 )
9 1 2 uzn0d ( 𝜑𝑍 ≠ ∅ )
10 9 adantr ( ( 𝜑𝑥𝐷 ) → 𝑍 ≠ ∅ )
11 3 adantr ( ( 𝜑𝑛𝑍 ) → 𝑆 ∈ SAlg )
12 4 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) )
13 eqid dom ( 𝐹𝑛 ) = dom ( 𝐹𝑛 )
14 11 12 13 smff ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ )
15 14 adantlr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ )
16 ssrab2 { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ⊆ 𝑛𝑍 dom ( 𝐹𝑛 )
17 5 eleq2i ( 𝑥𝐷𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
18 17 biimpi ( 𝑥𝐷𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
19 16 18 sseldi ( 𝑥𝐷𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
20 19 adantr ( ( 𝑥𝐷𝑛𝑍 ) → 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
21 simpr ( ( 𝑥𝐷𝑛𝑍 ) → 𝑛𝑍 )
22 eliinid ( ( 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
23 20 21 22 syl2anc ( ( 𝑥𝐷𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
24 23 adantll ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
25 15 24 ffvelrnd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
26 rabidim2 ( 𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
27 18 26 syl ( 𝑥𝐷 → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
28 27 adantl ( ( 𝜑𝑥𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
29 8 10 25 28 infnsuprnmpt ( ( 𝜑𝑥𝐷 ) → inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = - sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
30 29 mpteq2dva ( 𝜑 → ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥𝐷 ↦ - sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) )
31 7 30 eqtrd ( 𝜑𝐺 = ( 𝑥𝐷 ↦ - sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) )
32 nfv 𝑥 𝜑
33 fvex ( 𝐹𝑛 ) ∈ V
34 33 dmex dom ( 𝐹𝑛 ) ∈ V
35 34 rgenw 𝑛𝑍 dom ( 𝐹𝑛 ) ∈ V
36 35 a1i ( 𝜑 → ∀ 𝑛𝑍 dom ( 𝐹𝑛 ) ∈ V )
37 9 36 iinexd ( 𝜑 𝑛𝑍 dom ( 𝐹𝑛 ) ∈ V )
38 5 37 rabexd ( 𝜑𝐷 ∈ V )
39 25 renegcld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑛𝑍 ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
40 fveq2 ( 𝑤 = 𝑥 → ( ( 𝐹𝑚 ) ‘ 𝑤 ) = ( ( 𝐹𝑚 ) ‘ 𝑥 ) )
41 40 breq2d ( 𝑤 = 𝑥 → ( 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
42 41 ralbidv ( 𝑤 = 𝑥 → ( ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
43 42 rexbidv ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
44 nfcv 𝑤 𝑛𝑍 dom ( 𝐹𝑛 )
45 nfcv 𝑥 𝑍
46 nfcv 𝑥 ( 𝐹𝑚 )
47 46 nfdm 𝑥 dom ( 𝐹𝑚 )
48 45 47 nfiin 𝑥 𝑚𝑍 dom ( 𝐹𝑚 )
49 nfv 𝑤𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 )
50 nfv 𝑥𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 )
51 nfcv 𝑚 dom ( 𝐹𝑛 )
52 nfcv 𝑛 ( 𝐹𝑚 )
53 52 nfdm 𝑛 dom ( 𝐹𝑚 )
54 fveq2 ( 𝑛 = 𝑚 → ( 𝐹𝑛 ) = ( 𝐹𝑚 ) )
55 54 dmeqd ( 𝑛 = 𝑚 → dom ( 𝐹𝑛 ) = dom ( 𝐹𝑚 ) )
56 51 53 55 cbviin 𝑛𝑍 dom ( 𝐹𝑛 ) = 𝑚𝑍 dom ( 𝐹𝑚 )
57 56 a1i ( 𝑥 = 𝑤 𝑛𝑍 dom ( 𝐹𝑛 ) = 𝑚𝑍 dom ( 𝐹𝑚 ) )
58 fveq2 ( 𝑥 = 𝑤 → ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑤 ) )
59 58 breq2d ( 𝑥 = 𝑤 → ( 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) )
60 59 ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ) )
61 nfv 𝑚 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 )
62 nfcv 𝑛 𝑦
63 nfcv 𝑛
64 nfcv 𝑛 𝑤
65 52 64 nffv 𝑛 ( ( 𝐹𝑚 ) ‘ 𝑤 )
66 62 63 65 nfbr 𝑛 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 )
67 54 fveq1d ( 𝑛 = 𝑚 → ( ( 𝐹𝑛 ) ‘ 𝑤 ) = ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
68 67 breq2d ( 𝑛 = 𝑚 → ( 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ↔ 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
69 61 66 68 cbvralw ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
70 69 a1i ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
71 60 70 bitrd ( 𝑥 = 𝑤 → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
72 71 rexbidv ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
73 breq1 ( 𝑦 = 𝑧 → ( 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
74 73 ralbidv ( 𝑦 = 𝑧 → ( ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
75 74 cbvrexvw ( ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) )
76 75 a1i ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑚𝑍 𝑦 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
77 72 76 bitrd ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) ) )
78 44 48 49 50 57 77 cbvrabcsfw { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } = { 𝑤 𝑚𝑍 dom ( 𝐹𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) }
79 5 78 eqtri 𝐷 = { 𝑤 𝑚𝑍 dom ( 𝐹𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑤 ) }
80 43 79 elrab2 ( 𝑥𝐷 ↔ ( 𝑥 𝑚𝑍 dom ( 𝐹𝑚 ) ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
81 80 biimpi ( 𝑥𝐷 → ( 𝑥 𝑚𝑍 dom ( 𝐹𝑚 ) ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
82 81 simprd ( 𝑥𝐷 → ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) )
83 82 adantl ( ( 𝜑𝑥𝐷 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) )
84 renegcl ( 𝑧 ∈ ℝ → - 𝑧 ∈ ℝ )
85 84 ad2antlr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) → - 𝑧 ∈ ℝ )
86 fveq2 ( 𝑚 = 𝑛 → ( 𝐹𝑚 ) = ( 𝐹𝑛 ) )
87 86 fveq1d ( 𝑚 = 𝑛 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
88 87 breq2d ( 𝑚 = 𝑛 → ( 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ↔ 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
89 88 rspcva ( ( 𝑛𝑍 ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) → 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
90 89 ancoms ( ( ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ∧ 𝑛𝑍 ) → 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
91 90 adantll ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
92 simpllr ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → 𝑧 ∈ ℝ )
93 25 ad4ant14 ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
94 92 93 lenegd ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → ( 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) )
95 91 94 mpbid ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 )
96 95 ralrimiva ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) → ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 )
97 brralrspcev ( ( - 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
98 85 96 97 syl2anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
99 98 rexlimdva2 ( ( 𝜑𝑥𝐷 ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑚𝑍 𝑧 ≤ ( ( 𝐹𝑚 ) ‘ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) )
100 83 99 mpd ( ( 𝜑𝑥𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑦 )
101 8 10 39 100 suprclrnmpt ( ( 𝜑𝑥𝐷 ) → sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ )
102 5 a1i ( 𝜑𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } )
103 nfv 𝑦 ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
104 nfv 𝑦𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧
105 renegcl ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ )
106 105 3ad2ant2 ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → - 𝑦 ∈ ℝ )
107 nfv 𝑛 𝜑
108 nfcv 𝑛 𝑥
109 nfii1 𝑛 𝑛𝑍 dom ( 𝐹𝑛 )
110 108 109 nfel 𝑛 𝑥 𝑛𝑍 dom ( 𝐹𝑛 )
111 107 110 nfan 𝑛 ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) )
112 62 nfel1 𝑛 𝑦 ∈ ℝ
113 nfra1 𝑛𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 )
114 111 112 113 nf3an 𝑛 ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
115 simpl2 ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → 𝑦 ∈ ℝ )
116 simpll ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑛𝑍 ) → 𝜑 )
117 simpr ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑛𝑍 ) → 𝑛𝑍 )
118 22 adantll ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑛𝑍 ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
119 14 3adant3 ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ )
120 simp3 ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → 𝑥 ∈ dom ( 𝐹𝑛 ) )
121 119 120 ffvelrnd ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
122 116 117 118 121 syl3anc ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
123 122 3ad2antl1 ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
124 rspa ( ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∧ 𝑛𝑍 ) → 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
125 124 3ad2antl3 ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
126 leneg ( ( 𝑦 ∈ ℝ ∧ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ) → ( 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) )
127 126 biimp3a ( ( 𝑦 ∈ ℝ ∧ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 )
128 115 123 125 127 syl3anc ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛𝑍 ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 )
129 128 ex ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → ( 𝑛𝑍 → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) )
130 114 129 ralrimi ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 )
131 brralrspcev ( ( - 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 )
132 106 130 131 syl2anc ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 )
133 132 3exp ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) → ( 𝑦 ∈ ℝ → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ) )
134 103 104 133 rexlimd ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) )
135 84 3ad2ant2 ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ∈ ℝ )
136 nfv 𝑛 𝑧 ∈ ℝ
137 nfra1 𝑛𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧
138 111 136 137 nf3an 𝑛 ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 )
139 122 3ad2antl1 ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛𝑍 ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
140 simpl2 ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛𝑍 ) → 𝑧 ∈ ℝ )
141 rspa ( ( ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧𝑛𝑍 ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 )
142 141 3ad2antl3 ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛𝑍 ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 )
143 simp3 ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 )
144 renegcl ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
145 144 adantr ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
146 simpr ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ )
147 leneg ( ( - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
148 145 146 147 syl2anc ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
149 148 3adant3 ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ( - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
150 143 149 mpbid ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ≤ - - ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
151 recn ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℂ )
152 151 negnegd ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ → - - ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
153 152 3ad2ant1 ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - - ( ( 𝐹𝑛 ) ‘ 𝑥 ) = ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
154 150 153 breqtrd ( ( ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
155 139 140 142 154 syl3anc ( ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛𝑍 ) → - 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
156 155 ex ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ( 𝑛𝑍 → - 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
157 138 156 ralrimi ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ∀ 𝑛𝑍 - 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
158 breq1 ( 𝑦 = - 𝑧 → ( 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ - 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
159 158 ralbidv ( 𝑦 = - 𝑧 → ( ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛𝑍 - 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
160 159 rspcev ( ( - 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - 𝑧 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
161 135 157 160 syl2anc ( ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) )
162 161 3exp ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) → ( 𝑧 ∈ ℝ → ( ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ) )
163 162 rexlimdv ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
164 134 163 impbid ( ( 𝜑𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) )
165 32 164 rabbida ( 𝜑 → { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) } = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } )
166 102 165 eqtrd ( 𝜑𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } )
167 32 166 alrimi ( 𝜑 → ∀ 𝑥 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } )
168 eqid sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < )
169 168 rgenw 𝑥𝐷 sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < )
170 169 a1i ( 𝜑 → ∀ 𝑥𝐷 sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
171 mpteq12f ( ( ∀ 𝑥 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ∧ ∀ 𝑥𝐷 sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) → ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) )
172 167 170 171 syl2anc ( 𝜑 → ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) )
173 nfv 𝑧 𝜑
174 121 renegcld ( ( 𝜑𝑛𝑍𝑥 ∈ dom ( 𝐹𝑛 ) ) → - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
175 nfv 𝑥 ( 𝜑𝑛𝑍 )
176 34 a1i ( ( 𝜑𝑛𝑍 ) → dom ( 𝐹𝑛 ) ∈ V )
177 121 3expa ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹𝑛 ) ) → ( ( 𝐹𝑛 ) ‘ 𝑥 ) ∈ ℝ )
178 14 feqmptd ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) = ( 𝑥 ∈ dom ( 𝐹𝑛 ) ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) )
179 178 eqcomd ( ( 𝜑𝑛𝑍 ) → ( 𝑥 ∈ dom ( 𝐹𝑛 ) ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) = ( 𝐹𝑛 ) )
180 179 12 eqeltrd ( ( 𝜑𝑛𝑍 ) → ( 𝑥 ∈ dom ( 𝐹𝑛 ) ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) )
181 175 11 176 177 180 smfneg ( ( 𝜑𝑛𝑍 ) → ( 𝑥 ∈ dom ( 𝐹𝑛 ) ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) )
182 eqid { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 }
183 eqid ( 𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
184 107 32 173 1 2 3 174 181 182 183 smfsupmpt ( 𝜑 → ( 𝑥 ∈ { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛𝑍 - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) )
185 172 184 eqeltrd ( 𝜑 → ( 𝑥𝐷 ↦ sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) )
186 32 3 38 101 185 smfneg ( 𝜑 → ( 𝑥𝐷 ↦ - sup ( ran ( 𝑛𝑍 ↦ - ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) )
187 31 186 eqeltrd ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )