Step |
Hyp |
Ref |
Expression |
1 |
|
smfinflem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
smfinflem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
smfinflem.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfinflem.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfinflem.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
6 |
|
smfinflem.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
9 |
1 2
|
uzn0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑍 ≠ ∅ ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
12 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
13 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑛 ) |
14 |
11 12 13
|
smff |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
15 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
16 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
17 |
5
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
18 |
17
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
19 |
16 18
|
sselid |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
21 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
22 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
23 |
20 21 22
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
24 |
23
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
25 |
15 24
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
26 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
27 |
18 26
|
syl |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
29 |
8 10 25 28
|
infnsuprnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
30 |
29
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ 𝐷 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
31 |
7 30
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
32 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
33 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
34 |
33
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑛 ) ∈ V |
35 |
34
|
rgenw |
⊢ ∀ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V |
36 |
35
|
a1i |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
37 |
9 36
|
iinexd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
38 |
5 37
|
rabexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
39 |
25
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
40 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
42 |
41
|
ralbidv |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
43 |
42
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑤 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
45 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
46 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
47 |
46
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑚 ) |
48 |
45 47
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
49 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) |
50 |
|
nfv |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
51 |
|
nfcv |
⊢ Ⅎ 𝑚 dom ( 𝐹 ‘ 𝑛 ) |
52 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) |
53 |
52
|
nfdm |
⊢ Ⅎ 𝑛 dom ( 𝐹 ‘ 𝑚 ) |
54 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
55 |
54
|
dmeqd |
⊢ ( 𝑛 = 𝑚 → dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑚 ) ) |
56 |
51 53 55
|
cbviin |
⊢ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) |
57 |
56
|
a1i |
⊢ ( 𝑥 = 𝑤 → ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) = ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
59 |
58
|
breq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
60 |
59
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
61 |
|
nfv |
⊢ Ⅎ 𝑚 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) |
62 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑦 |
63 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
64 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑤 |
65 |
52 64
|
nffv |
⊢ Ⅎ 𝑛 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
66 |
62 63 65
|
nfbr |
⊢ Ⅎ 𝑛 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) |
67 |
54
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
68 |
67
|
breq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
69 |
61 66 68
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
70 |
69
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
71 |
60 70
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
72 |
71
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
73 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
74 |
73
|
ralbidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
75 |
74
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
76 |
75
|
a1i |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
77 |
72 76
|
bitrd |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) |
78 |
44 48 49 50 57 77
|
cbvrabcsfw |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } |
79 |
5 78
|
eqtri |
⊢ 𝐷 = { 𝑤 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) } |
80 |
43 79
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
81 |
80
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝑥 ∈ ∩ 𝑚 ∈ 𝑍 dom ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
82 |
81
|
simprd |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
84 |
|
renegcl |
⊢ ( 𝑧 ∈ ℝ → - 𝑧 ∈ ℝ ) |
85 |
84
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) → - 𝑧 ∈ ℝ ) |
86 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
87 |
86
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
88 |
87
|
breq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ↔ 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
89 |
88
|
rspcva |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) → 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
90 |
89
|
ancoms |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
91 |
90
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
92 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑧 ∈ ℝ ) |
93 |
25
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
94 |
92 93
|
lenegd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) ) |
95 |
91 94
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) |
96 |
95
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) → ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) |
97 |
|
brralrspcev |
⊢ ( ( - 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
98 |
85 96 97
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
99 |
98
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ 𝑍 𝑧 ≤ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
100 |
83 99
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
101 |
8 10 39 100
|
suprclrnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
102 |
5
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
103 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
104 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 |
105 |
|
renegcl |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) |
106 |
105
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → - 𝑦 ∈ ℝ ) |
107 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
108 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
109 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
110 |
108 109
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
111 |
107 110
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
112 |
62
|
nfel1 |
⊢ Ⅎ 𝑛 𝑦 ∈ ℝ |
113 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) |
114 |
111 112 113
|
nf3an |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
115 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ ) |
116 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝜑 ) |
117 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
118 |
22
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
119 |
14
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
120 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
121 |
119 120
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
122 |
116 117 118 121
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
123 |
122
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
124 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
125 |
124
|
3ad2antl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
126 |
|
leneg |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) ) |
127 |
126
|
biimp3a |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) |
128 |
115 123 125 127
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) |
129 |
128
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ( 𝑛 ∈ 𝑍 → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) ) |
130 |
114 129
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) |
131 |
|
brralrspcev |
⊢ ( ( - 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ - 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
132 |
106 130 131
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
133 |
132
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( 𝑦 ∈ ℝ → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ) ) |
134 |
103 104 133
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ) |
135 |
84
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ∈ ℝ ) |
136 |
|
nfv |
⊢ Ⅎ 𝑛 𝑧 ∈ ℝ |
137 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 |
138 |
111 136 137
|
nf3an |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
139 |
122
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
140 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑧 ∈ ℝ ) |
141 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
142 |
141
|
3ad2antl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
143 |
|
simp3 |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) |
144 |
|
renegcl |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
145 |
144
|
adantr |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
146 |
|
simpr |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) |
147 |
|
leneg |
⊢ ( ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
148 |
145 146 147
|
syl2anc |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
149 |
148
|
3adant3 |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ( - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ↔ - 𝑧 ≤ - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
150 |
143 149
|
mpbid |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ≤ - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
151 |
|
recn |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
152 |
151
|
negnegd |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ → - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
153 |
152
|
3ad2ant1 |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
154 |
150 153
|
breqtrd |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
155 |
139 140 142 154
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ∧ 𝑛 ∈ 𝑍 ) → - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
156 |
155
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ( 𝑛 ∈ 𝑍 → - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
157 |
138 156
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ∀ 𝑛 ∈ 𝑍 - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
158 |
|
breq1 |
⊢ ( 𝑦 = - 𝑧 → ( 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
159 |
158
|
ralbidv |
⊢ ( 𝑦 = - 𝑧 → ( ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∀ 𝑛 ∈ 𝑍 - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
160 |
159
|
rspcev |
⊢ ( ( - 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - 𝑧 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
161 |
135 157 160
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑧 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
162 |
161
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( 𝑧 ∈ ℝ → ( ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
163 |
162
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
164 |
134 163
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 ) ) |
165 |
32 164
|
rabbida |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ) |
166 |
102 165
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ) |
167 |
32 166
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑥 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ) |
168 |
|
eqid |
⊢ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) |
169 |
168
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐷 sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) |
170 |
169
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
171 |
|
mpteq12f |
⊢ ( ( ∀ 𝑥 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ∧ ∀ 𝑥 ∈ 𝐷 sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) → ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
172 |
167 170 171
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
173 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
174 |
121
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
175 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
176 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐹 ‘ 𝑛 ) ∈ V ) |
177 |
121
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
178 |
14
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
179 |
178
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
180 |
179 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
181 |
175 11 176 177 180
|
smfneg |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
182 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } |
183 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
184 |
107 32 173 1 2 3 174 181 182 183
|
smfsupmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ 𝑍 - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑧 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
185 |
172 184
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
186 |
32 3 38 101 185
|
smfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ - sup ( ran ( 𝑛 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
187 |
31 186
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |