| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infnsuprnmpt.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | infnsuprnmpt.a | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 3 |  | infnsuprnmpt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | infnsuprnmpt.l | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 𝑦  ≤  𝐵 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 6 | 1 5 3 | rnmptssd | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 7 | 1 3 5 2 | rnmptn0 | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅ ) | 
						
							| 8 | 4 | rnmptlb | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑦  ≤  𝑧 ) | 
						
							| 9 |  | infrenegsup | ⊢ ( ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ  ∧  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑦  ≤  𝑧 )  →  inf ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ ,   <  )  =  - sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } ,  ℝ ,   <  ) ) | 
						
							| 10 | 6 7 8 9 | syl3anc | ⊢ ( 𝜑  →  inf ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ ,   <  )  =  - sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } ,  ℝ ,   <  ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) | 
						
							| 12 |  | rabidim2 | ⊢ ( 𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  →  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } )  →  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 14 |  | negex | ⊢ - 𝑤  ∈  V | 
						
							| 15 | 5 | elrnmpt | ⊢ ( - 𝑤  ∈  V  →  ( - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 - 𝑤  =  𝐵 ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 - 𝑤  =  𝐵 ) | 
						
							| 17 | 13 16 | sylib | ⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } )  →  ∃ 𝑥  ∈  𝐴 - 𝑤  =  𝐵 ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 19 | 18 | nfneg | ⊢ Ⅎ 𝑥 - 𝑤 | 
						
							| 20 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 21 | 20 | nfrn | ⊢ Ⅎ 𝑥 ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 22 | 19 21 | nfel | ⊢ Ⅎ 𝑥 - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 24 | 22 23 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } | 
						
							| 25 | 18 24 | nfel | ⊢ Ⅎ 𝑥 𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } | 
						
							| 26 | 1 25 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } ) | 
						
							| 27 |  | rabidim1 | ⊢ ( 𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  →  𝑤  ∈  ℝ ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } )  →  𝑤  ∈  ℝ ) | 
						
							| 29 |  | negeq | ⊢ ( - 𝑤  =  𝐵  →  - - 𝑤  =  - 𝐵 ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( - 𝑤  =  𝐵  →  - 𝐵  =  - - 𝑤 ) | 
						
							| 31 | 30 | 3ad2ant3 | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑥  ∈  𝐴  ∧  - 𝑤  =  𝐵 )  →  - 𝐵  =  - - 𝑤 ) | 
						
							| 32 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑥  ∈  𝐴  ∧  - 𝑤  =  𝐵 )  →  𝑤  ∈  ℝ ) | 
						
							| 33 |  | recn | ⊢ ( 𝑤  ∈  ℝ  →  𝑤  ∈  ℂ ) | 
						
							| 34 | 33 | negnegd | ⊢ ( 𝑤  ∈  ℝ  →  - - 𝑤  =  𝑤 ) | 
						
							| 35 | 32 34 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑥  ∈  𝐴  ∧  - 𝑤  =  𝐵 )  →  - - 𝑤  =  𝑤 ) | 
						
							| 36 | 31 35 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑥  ∈  𝐴  ∧  - 𝑤  =  𝐵 )  →  𝑤  =  - 𝐵 ) | 
						
							| 37 | 36 | 3exp | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ )  →  ( 𝑥  ∈  𝐴  →  ( - 𝑤  =  𝐵  →  𝑤  =  - 𝐵 ) ) ) | 
						
							| 38 | 28 37 | syldan | ⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } )  →  ( 𝑥  ∈  𝐴  →  ( - 𝑤  =  𝐵  →  𝑤  =  - 𝐵 ) ) ) | 
						
							| 39 | 26 38 | reximdai | ⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } )  →  ( ∃ 𝑥  ∈  𝐴 - 𝑤  =  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑤  =  - 𝐵 ) ) | 
						
							| 40 | 17 39 | mpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } )  →  ∃ 𝑥  ∈  𝐴 𝑤  =  - 𝐵 ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } )  →  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } ) | 
						
							| 42 | 11 40 41 | elrnmptd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } )  →  𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ) | 
						
							| 43 | 42 | ex | ⊢ ( 𝜑  →  ( 𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  →  𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ) ) | 
						
							| 44 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 45 | 11 | elrnmpt | ⊢ ( 𝑤  ∈  V  →  ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑤  =  - 𝐵 ) ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑤  =  - 𝐵 ) | 
						
							| 47 | 46 | biimpi | ⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑤  =  - 𝐵 ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) )  →  ∃ 𝑥  ∈  𝐴 𝑤  =  - 𝐵 ) | 
						
							| 49 | 18 23 | nfel | ⊢ Ⅎ 𝑥 𝑤  ∈  ℝ | 
						
							| 50 | 49 22 | nfan | ⊢ Ⅎ 𝑥 ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 51 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  𝑤  =  - 𝐵 ) | 
						
							| 52 | 3 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 53 | 52 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 54 | 51 53 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  𝑤  ∈  ℝ ) | 
						
							| 55 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  𝑥  ∈  𝐴 ) | 
						
							| 56 | 51 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  - 𝑤  =  - - 𝐵 ) | 
						
							| 57 | 3 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 58 | 57 | negnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - - 𝐵  =  𝐵 ) | 
						
							| 59 | 58 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  - - 𝐵  =  𝐵 ) | 
						
							| 60 | 56 59 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  - 𝑤  =  𝐵 ) | 
						
							| 61 |  | rspe | ⊢ ( ( 𝑥  ∈  𝐴  ∧  - 𝑤  =  𝐵 )  →  ∃ 𝑥  ∈  𝐴 - 𝑤  =  𝐵 ) | 
						
							| 62 | 55 60 61 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  ∃ 𝑥  ∈  𝐴 - 𝑤  =  𝐵 ) | 
						
							| 63 | 14 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  - 𝑤  ∈  V ) | 
						
							| 64 | 5 62 63 | elrnmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 65 | 54 64 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑤  =  - 𝐵 )  →  ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 66 | 65 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝑤  =  - 𝐵  →  ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) ) ) | 
						
							| 67 | 1 50 66 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝑤  =  - 𝐵  →  ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) ) | 
						
							| 68 | 67 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 𝑤  =  - 𝐵 )  →  ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 69 | 48 68 | syldan | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) )  →  ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 70 |  | rabid | ⊢ ( 𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  ↔  ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 71 | 69 70 | sylibr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) )  →  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } ) | 
						
							| 72 | 71 | ex | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  →  𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } ) ) | 
						
							| 73 | 43 72 | impbid | ⊢ ( 𝜑  →  ( 𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  ↔  𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ) ) | 
						
							| 74 | 73 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑤 ( 𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  ↔  𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ) ) | 
						
							| 75 |  | nfrab1 | ⊢ Ⅎ 𝑤 { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } | 
						
							| 76 |  | nfcv | ⊢ Ⅎ 𝑤 ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) | 
						
							| 77 | 75 76 | cleqf | ⊢ ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  =  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ↔  ∀ 𝑤 ( 𝑤  ∈  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  ↔  𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ) ) | 
						
							| 78 | 74 77 | sylibr | ⊢ ( 𝜑  →  { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) }  =  ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ) | 
						
							| 79 | 78 | supeq1d | ⊢ ( 𝜑  →  sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } ,  ℝ ,   <  )  =  sup ( ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ,  ℝ ,   <  ) ) | 
						
							| 80 | 79 | negeqd | ⊢ ( 𝜑  →  - sup ( { 𝑤  ∈  ℝ  ∣  - 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) } ,  ℝ ,   <  )  =  - sup ( ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ,  ℝ ,   <  ) ) | 
						
							| 81 |  | eqidd | ⊢ ( 𝜑  →  - sup ( ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ,  ℝ ,   <  )  =  - sup ( ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ,  ℝ ,   <  ) ) | 
						
							| 82 | 10 80 81 | 3eqtrd | ⊢ ( 𝜑  →  inf ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ ,   <  )  =  - sup ( ran  ( 𝑥  ∈  𝐴  ↦  - 𝐵 ) ,  ℝ ,   <  ) ) |