| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infnsuprnmpt.x |  |-  F/ x ph | 
						
							| 2 |  | infnsuprnmpt.a |  |-  ( ph -> A =/= (/) ) | 
						
							| 3 |  | infnsuprnmpt.b |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 4 |  | infnsuprnmpt.l |  |-  ( ph -> E. y e. RR A. x e. A y <_ B ) | 
						
							| 5 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 6 | 1 5 3 | rnmptssd |  |-  ( ph -> ran ( x e. A |-> B ) C_ RR ) | 
						
							| 7 | 1 3 5 2 | rnmptn0 |  |-  ( ph -> ran ( x e. A |-> B ) =/= (/) ) | 
						
							| 8 | 4 | rnmptlb |  |-  ( ph -> E. y e. RR A. z e. ran ( x e. A |-> B ) y <_ z ) | 
						
							| 9 |  | infrenegsup |  |-  ( ( ran ( x e. A |-> B ) C_ RR /\ ran ( x e. A |-> B ) =/= (/) /\ E. y e. RR A. z e. ran ( x e. A |-> B ) y <_ z ) -> inf ( ran ( x e. A |-> B ) , RR , < ) = -u sup ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) ) | 
						
							| 10 | 6 7 8 9 | syl3anc |  |-  ( ph -> inf ( ran ( x e. A |-> B ) , RR , < ) = -u sup ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) ) | 
						
							| 11 |  | eqid |  |-  ( x e. A |-> -u B ) = ( x e. A |-> -u B ) | 
						
							| 12 |  | rabidim2 |  |-  ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } -> -u w e. ran ( x e. A |-> B ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> -u w e. ran ( x e. A |-> B ) ) | 
						
							| 14 |  | negex |  |-  -u w e. _V | 
						
							| 15 | 5 | elrnmpt |  |-  ( -u w e. _V -> ( -u w e. ran ( x e. A |-> B ) <-> E. x e. A -u w = B ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( -u w e. ran ( x e. A |-> B ) <-> E. x e. A -u w = B ) | 
						
							| 17 | 13 16 | sylib |  |-  ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> E. x e. A -u w = B ) | 
						
							| 18 |  | nfcv |  |-  F/_ x w | 
						
							| 19 | 18 | nfneg |  |-  F/_ x -u w | 
						
							| 20 |  | nfmpt1 |  |-  F/_ x ( x e. A |-> B ) | 
						
							| 21 | 20 | nfrn |  |-  F/_ x ran ( x e. A |-> B ) | 
						
							| 22 | 19 21 | nfel |  |-  F/ x -u w e. ran ( x e. A |-> B ) | 
						
							| 23 |  | nfcv |  |-  F/_ x RR | 
						
							| 24 | 22 23 | nfrabw |  |-  F/_ x { w e. RR | -u w e. ran ( x e. A |-> B ) } | 
						
							| 25 | 18 24 | nfel |  |-  F/ x w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } | 
						
							| 26 | 1 25 | nfan |  |-  F/ x ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) | 
						
							| 27 |  | rabidim1 |  |-  ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } -> w e. RR ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> w e. RR ) | 
						
							| 29 |  | negeq |  |-  ( -u w = B -> -u -u w = -u B ) | 
						
							| 30 | 29 | eqcomd |  |-  ( -u w = B -> -u B = -u -u w ) | 
						
							| 31 | 30 | 3ad2ant3 |  |-  ( ( ( ph /\ w e. RR ) /\ x e. A /\ -u w = B ) -> -u B = -u -u w ) | 
						
							| 32 |  | simp1r |  |-  ( ( ( ph /\ w e. RR ) /\ x e. A /\ -u w = B ) -> w e. RR ) | 
						
							| 33 |  | recn |  |-  ( w e. RR -> w e. CC ) | 
						
							| 34 | 33 | negnegd |  |-  ( w e. RR -> -u -u w = w ) | 
						
							| 35 | 32 34 | syl |  |-  ( ( ( ph /\ w e. RR ) /\ x e. A /\ -u w = B ) -> -u -u w = w ) | 
						
							| 36 | 31 35 | eqtr2d |  |-  ( ( ( ph /\ w e. RR ) /\ x e. A /\ -u w = B ) -> w = -u B ) | 
						
							| 37 | 36 | 3exp |  |-  ( ( ph /\ w e. RR ) -> ( x e. A -> ( -u w = B -> w = -u B ) ) ) | 
						
							| 38 | 28 37 | syldan |  |-  ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> ( x e. A -> ( -u w = B -> w = -u B ) ) ) | 
						
							| 39 | 26 38 | reximdai |  |-  ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> ( E. x e. A -u w = B -> E. x e. A w = -u B ) ) | 
						
							| 40 | 17 39 | mpd |  |-  ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> E. x e. A w = -u B ) | 
						
							| 41 |  | simpr |  |-  ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) | 
						
							| 42 | 11 40 41 | elrnmptd |  |-  ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> w e. ran ( x e. A |-> -u B ) ) | 
						
							| 43 | 42 | ex |  |-  ( ph -> ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } -> w e. ran ( x e. A |-> -u B ) ) ) | 
						
							| 44 |  | vex |  |-  w e. _V | 
						
							| 45 | 11 | elrnmpt |  |-  ( w e. _V -> ( w e. ran ( x e. A |-> -u B ) <-> E. x e. A w = -u B ) ) | 
						
							| 46 | 44 45 | ax-mp |  |-  ( w e. ran ( x e. A |-> -u B ) <-> E. x e. A w = -u B ) | 
						
							| 47 | 46 | biimpi |  |-  ( w e. ran ( x e. A |-> -u B ) -> E. x e. A w = -u B ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ph /\ w e. ran ( x e. A |-> -u B ) ) -> E. x e. A w = -u B ) | 
						
							| 49 | 18 23 | nfel |  |-  F/ x w e. RR | 
						
							| 50 | 49 22 | nfan |  |-  F/ x ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) | 
						
							| 51 |  | simp3 |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> w = -u B ) | 
						
							| 52 | 3 | renegcld |  |-  ( ( ph /\ x e. A ) -> -u B e. RR ) | 
						
							| 53 | 52 | 3adant3 |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> -u B e. RR ) | 
						
							| 54 | 51 53 | eqeltrd |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> w e. RR ) | 
						
							| 55 |  | simp2 |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> x e. A ) | 
						
							| 56 | 51 | negeqd |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> -u w = -u -u B ) | 
						
							| 57 | 3 | recnd |  |-  ( ( ph /\ x e. A ) -> B e. CC ) | 
						
							| 58 | 57 | negnegd |  |-  ( ( ph /\ x e. A ) -> -u -u B = B ) | 
						
							| 59 | 58 | 3adant3 |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> -u -u B = B ) | 
						
							| 60 | 56 59 | eqtrd |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> -u w = B ) | 
						
							| 61 |  | rspe |  |-  ( ( x e. A /\ -u w = B ) -> E. x e. A -u w = B ) | 
						
							| 62 | 55 60 61 | syl2anc |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> E. x e. A -u w = B ) | 
						
							| 63 | 14 | a1i |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> -u w e. _V ) | 
						
							| 64 | 5 62 63 | elrnmptd |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> -u w e. ran ( x e. A |-> B ) ) | 
						
							| 65 | 54 64 | jca |  |-  ( ( ph /\ x e. A /\ w = -u B ) -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) | 
						
							| 66 | 65 | 3exp |  |-  ( ph -> ( x e. A -> ( w = -u B -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) ) ) | 
						
							| 67 | 1 50 66 | rexlimd |  |-  ( ph -> ( E. x e. A w = -u B -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) ) | 
						
							| 68 | 67 | imp |  |-  ( ( ph /\ E. x e. A w = -u B ) -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) | 
						
							| 69 | 48 68 | syldan |  |-  ( ( ph /\ w e. ran ( x e. A |-> -u B ) ) -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) | 
						
							| 70 |  | rabid |  |-  ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } <-> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) | 
						
							| 71 | 69 70 | sylibr |  |-  ( ( ph /\ w e. ran ( x e. A |-> -u B ) ) -> w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) | 
						
							| 72 | 71 | ex |  |-  ( ph -> ( w e. ran ( x e. A |-> -u B ) -> w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) ) | 
						
							| 73 | 43 72 | impbid |  |-  ( ph -> ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } <-> w e. ran ( x e. A |-> -u B ) ) ) | 
						
							| 74 | 73 | alrimiv |  |-  ( ph -> A. w ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } <-> w e. ran ( x e. A |-> -u B ) ) ) | 
						
							| 75 |  | nfrab1 |  |-  F/_ w { w e. RR | -u w e. ran ( x e. A |-> B ) } | 
						
							| 76 |  | nfcv |  |-  F/_ w ran ( x e. A |-> -u B ) | 
						
							| 77 | 75 76 | cleqf |  |-  ( { w e. RR | -u w e. ran ( x e. A |-> B ) } = ran ( x e. A |-> -u B ) <-> A. w ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } <-> w e. ran ( x e. A |-> -u B ) ) ) | 
						
							| 78 | 74 77 | sylibr |  |-  ( ph -> { w e. RR | -u w e. ran ( x e. A |-> B ) } = ran ( x e. A |-> -u B ) ) | 
						
							| 79 | 78 | supeq1d |  |-  ( ph -> sup ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) = sup ( ran ( x e. A |-> -u B ) , RR , < ) ) | 
						
							| 80 | 79 | negeqd |  |-  ( ph -> -u sup ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) = -u sup ( ran ( x e. A |-> -u B ) , RR , < ) ) | 
						
							| 81 |  | eqidd |  |-  ( ph -> -u sup ( ran ( x e. A |-> -u B ) , RR , < ) = -u sup ( ran ( x e. A |-> -u B ) , RR , < ) ) | 
						
							| 82 | 10 80 81 | 3eqtrd |  |-  ( ph -> inf ( ran ( x e. A |-> B ) , RR , < ) = -u sup ( ran ( x e. A |-> -u B ) , RR , < ) ) |