Step |
Hyp |
Ref |
Expression |
1 |
|
smfinfmpt.n |
|
2 |
|
smfinfmpt.x |
|
3 |
|
smfinfmpt.y |
|
4 |
|
smfinfmpt.m |
|
5 |
|
smfinfmpt.z |
|
6 |
|
smfinfmpt.s |
|
7 |
|
smfinfmpt.b |
|
8 |
|
smfinfmpt.f |
|
9 |
|
smfinfmpt.d |
|
10 |
|
smfinfmpt.g |
|
11 |
|
eqidd |
|
12 |
11 8
|
fvmpt2d |
|
13 |
12
|
dmeqd |
|
14 |
|
nfcv |
|
15 |
14
|
nfcri |
|
16 |
2 15
|
nfan |
|
17 |
|
eqid |
|
18 |
7
|
3expa |
|
19 |
16 17 18
|
dmmptdf |
|
20 |
13 19
|
eqtr2d |
|
21 |
1 20
|
iineq2d |
|
22 |
2 21
|
rabeqd |
|
23 |
|
nfv |
|
24 |
3 23
|
nfan |
|
25 |
|
nfii1 |
|
26 |
25
|
nfcri |
|
27 |
1 26
|
nfan |
|
28 |
|
simpll |
|
29 |
|
simpr |
|
30 |
|
eliinid |
|
31 |
30
|
adantll |
|
32 |
13 19
|
eqtrd |
|
33 |
32
|
adantlr |
|
34 |
31 33
|
eleqtrd |
|
35 |
12
|
fveq1d |
|
36 |
35
|
3adant3 |
|
37 |
|
simp3 |
|
38 |
|
fvmpt4 |
|
39 |
37 7 38
|
syl2anc |
|
40 |
36 39
|
eqtr2d |
|
41 |
40
|
breq2d |
|
42 |
28 29 34 41
|
syl3anc |
|
43 |
27 42
|
ralbida |
|
44 |
24 43
|
rexbid |
|
45 |
2 44
|
rabbida |
|
46 |
22 45
|
eqtrd |
|
47 |
9 46
|
eqtrid |
|
48 |
|
nfcv |
|
49 |
|
nfra1 |
|
50 |
48 49
|
nfrexw |
|
51 |
|
nfii1 |
|
52 |
50 51
|
nfrabw |
|
53 |
9 52
|
nfcxfr |
|
54 |
53
|
nfcri |
|
55 |
1 54
|
nfan |
|
56 |
|
simpll |
|
57 |
|
simpr |
|
58 |
|
rabidim1 |
|
59 |
58 9
|
eleq2s |
|
60 |
|
eliinid |
|
61 |
59 60
|
sylan |
|
62 |
61
|
adantll |
|
63 |
56 57 62 40
|
syl3anc |
|
64 |
55 63
|
mpteq2da |
|
65 |
64
|
rneqd |
|
66 |
65
|
infeq1d |
|
67 |
2 47 66
|
mpteq12da |
|
68 |
10 67
|
eqtrid |
|
69 |
|
nfmpt1 |
|
70 |
|
nfmpt1 |
|
71 |
14 70
|
nfmpt |
|
72 |
1 8
|
fmptd2f |
|
73 |
|
eqid |
|
74 |
|
eqid |
|
75 |
69 71 4 5 6 72 73 74
|
smfinf |
|
76 |
68 75
|
eqeltrd |
|