Metamath Proof Explorer


Theorem smflimsuplem1

Description: If H converges, the limsup of F is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem1.z Z=M
smflimsuplem1.e E=nZxmndomFm|supranmnFmx*<
smflimsuplem1.h H=nZxEnsupranmnFmx*<
smflimsuplem1.k φKZ
Assertion smflimsuplem1 φdomHKdomFK

Proof

Step Hyp Ref Expression
1 smflimsuplem1.z Z=M
2 smflimsuplem1.e E=nZxmndomFm|supranmnFmx*<
3 smflimsuplem1.h H=nZxEnsupranmnFmx*<
4 smflimsuplem1.k φKZ
5 fveq2 m=jFm=Fj
6 5 fveq1d m=jFmx=Fjx
7 6 cbvmptv mnFmx=jnFjx
8 7 rneqi ranmnFmx=ranjnFjx
9 8 supeq1i supranmnFmx*<=supranjnFjx*<
10 9 mpteq2i xEnsupranmnFmx*<=xEnsupranjnFjx*<
11 10 a1i n=KxEnsupranmnFmx*<=xEnsupranjnFjx*<
12 fveq2 n=KEn=EK
13 fveq2 n=Kn=K
14 13 mpteq1d n=KjnFjx=jKFjx
15 14 rneqd n=KranjnFjx=ranjKFjx
16 15 supeq1d n=KsupranjnFjx*<=supranjKFjx*<
17 12 16 mpteq12dv n=KxEnsupranjnFjx*<=xEKsupranjKFjx*<
18 11 17 eqtrd n=KxEnsupranmnFmx*<=xEKsupranjKFjx*<
19 fvex EKV
20 19 mptex xEKsupranjKFjx*<V
21 20 a1i φxEKsupranjKFjx*<V
22 3 18 4 21 fvmptd3 φHK=xEKsupranjKFjx*<
23 22 dmeqd φdomHK=domxEKsupranjKFjx*<
24 xrltso <Or*
25 24 supex supranjKFjx*<V
26 eqid xEKsupranjKFjx*<=xEKsupranjKFjx*<
27 25 26 dmmpti domxEKsupranjKFjx*<=EK
28 27 a1i φdomxEKsupranjKFjx*<=EK
29 5 dmeqd m=jdomFm=domFj
30 29 cbviinv mndomFm=jndomFj
31 30 eleq2i xmndomFmxjndomFj
32 9 eleq1i supranmnFmx*<supranjnFjx*<
33 31 32 anbi12i xmndomFmsupranmnFmx*<xjndomFjsupranjnFjx*<
34 33 rabbia2 xmndomFm|supranmnFmx*<=xjndomFj|supranjnFjx*<
35 34 a1i n=KxmndomFm|supranmnFmx*<=xjndomFj|supranjnFjx*<
36 13 iineq1d n=KjndomFj=jKdomFj
37 36 eleq2d n=KxjndomFjxjKdomFj
38 16 eleq1d n=KsupranjnFjx*<supranjKFjx*<
39 37 38 anbi12d n=KxjndomFjsupranjnFjx*<xjKdomFjsupranjKFjx*<
40 39 rabbidva2 n=KxjndomFj|supranjnFjx*<=xjKdomFj|supranjKFjx*<
41 35 40 eqtrd n=KxmndomFm|supranmnFmx*<=xjKdomFj|supranjKFjx*<
42 eqid xjKdomFj|supranjKFjx*<=xjKdomFj|supranjKFjx*<
43 1 4 eluzelz2d φK
44 uzid KKK
45 ne0i KKK
46 43 44 45 3syl φK
47 fvex FjV
48 47 dmex domFjV
49 48 rgenw jKdomFjV
50 49 a1i φjKdomFjV
51 46 50 iinexd φjKdomFjV
52 42 51 rabexd φxjKdomFj|supranjKFjx*<V
53 2 41 4 52 fvmptd3 φEK=xjKdomFj|supranjKFjx*<
54 23 28 53 3eqtrd φdomHK=xjKdomFj|supranjKFjx*<
55 ssrab2 xjKdomFj|supranjKFjx*<jKdomFj
56 55 a1i φxjKdomFj|supranjKFjx*<jKdomFj
57 43 44 syl φKK
58 fveq2 j=KFj=FK
59 58 dmeqd j=KdomFj=domFK
60 ssid domFKdomFK
61 60 a1i φdomFKdomFK
62 57 59 61 iinssd φjKdomFjdomFK
63 56 62 sstrd φxjKdomFj|supranjKFjx*<domFK
64 54 63 eqsstrd φdomHKdomFK