Description: If H converges, the limsup of F is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smflimsuplem1.z | |
|
smflimsuplem1.e | |
||
smflimsuplem1.h | |
||
smflimsuplem1.k | |
||
Assertion | smflimsuplem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflimsuplem1.z | |
|
2 | smflimsuplem1.e | |
|
3 | smflimsuplem1.h | |
|
4 | smflimsuplem1.k | |
|
5 | fveq2 | |
|
6 | 5 | fveq1d | |
7 | 6 | cbvmptv | |
8 | 7 | rneqi | |
9 | 8 | supeq1i | |
10 | 9 | mpteq2i | |
11 | 10 | a1i | |
12 | fveq2 | |
|
13 | fveq2 | |
|
14 | 13 | mpteq1d | |
15 | 14 | rneqd | |
16 | 15 | supeq1d | |
17 | 12 16 | mpteq12dv | |
18 | 11 17 | eqtrd | |
19 | fvex | |
|
20 | 19 | mptex | |
21 | 20 | a1i | |
22 | 3 18 4 21 | fvmptd3 | |
23 | 22 | dmeqd | |
24 | xrltso | |
|
25 | 24 | supex | |
26 | eqid | |
|
27 | 25 26 | dmmpti | |
28 | 27 | a1i | |
29 | 5 | dmeqd | |
30 | 29 | cbviinv | |
31 | 30 | eleq2i | |
32 | 9 | eleq1i | |
33 | 31 32 | anbi12i | |
34 | 33 | rabbia2 | |
35 | 34 | a1i | |
36 | 13 | iineq1d | |
37 | 36 | eleq2d | |
38 | 16 | eleq1d | |
39 | 37 38 | anbi12d | |
40 | 39 | rabbidva2 | |
41 | 35 40 | eqtrd | |
42 | eqid | |
|
43 | 1 4 | eluzelz2d | |
44 | uzid | |
|
45 | ne0i | |
|
46 | 43 44 45 | 3syl | |
47 | fvex | |
|
48 | 47 | dmex | |
49 | 48 | rgenw | |
50 | 49 | a1i | |
51 | 46 50 | iinexd | |
52 | 42 51 | rabexd | |
53 | 2 41 4 52 | fvmptd3 | |
54 | 23 28 53 | 3eqtrd | |
55 | ssrab2 | |
|
56 | 55 | a1i | |
57 | 43 44 | syl | |
58 | fveq2 | |
|
59 | 58 | dmeqd | |
60 | ssid | |
|
61 | 60 | a1i | |
62 | 57 59 61 | iinssd | |
63 | 56 62 | sstrd | |
64 | 54 63 | eqsstrd | |