| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem1.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | smflimsuplem1.e |  |-  E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 3 |  | smflimsuplem1.h |  |-  H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 4 |  | smflimsuplem1.k |  |-  ( ph -> K e. Z ) | 
						
							| 5 |  | fveq2 |  |-  ( m = j -> ( F ` m ) = ( F ` j ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( m = j -> ( ( F ` m ) ` x ) = ( ( F ` j ) ` x ) ) | 
						
							| 7 | 6 | cbvmptv |  |-  ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) | 
						
							| 8 | 7 | rneqi |  |-  ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) | 
						
							| 9 | 8 | supeq1i |  |-  sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) | 
						
							| 10 | 9 | mpteq2i |  |-  ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` n ) |-> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) | 
						
							| 11 | 10 | a1i |  |-  ( n = K -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` n ) |-> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( n = K -> ( E ` n ) = ( E ` K ) ) | 
						
							| 13 |  | fveq2 |  |-  ( n = K -> ( ZZ>= ` n ) = ( ZZ>= ` K ) ) | 
						
							| 14 | 13 | mpteq1d |  |-  ( n = K -> ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) = ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) ) | 
						
							| 15 | 14 | rneqd |  |-  ( n = K -> ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) = ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) ) | 
						
							| 16 | 15 | supeq1d |  |-  ( n = K -> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) = sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) | 
						
							| 17 | 12 16 | mpteq12dv |  |-  ( n = K -> ( x e. ( E ` n ) |-> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) | 
						
							| 18 | 11 17 | eqtrd |  |-  ( n = K -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) | 
						
							| 19 |  | fvex |  |-  ( E ` K ) e. _V | 
						
							| 20 | 19 | mptex |  |-  ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ph -> ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) e. _V ) | 
						
							| 22 | 3 18 4 21 | fvmptd3 |  |-  ( ph -> ( H ` K ) = ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) | 
						
							| 23 | 22 | dmeqd |  |-  ( ph -> dom ( H ` K ) = dom ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) | 
						
							| 24 |  | xrltso |  |-  < Or RR* | 
						
							| 25 | 24 | supex |  |-  sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. _V | 
						
							| 26 |  | eqid |  |-  ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) | 
						
							| 27 | 25 26 | dmmpti |  |-  dom ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) = ( E ` K ) | 
						
							| 28 | 27 | a1i |  |-  ( ph -> dom ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) = ( E ` K ) ) | 
						
							| 29 | 5 | dmeqd |  |-  ( m = j -> dom ( F ` m ) = dom ( F ` j ) ) | 
						
							| 30 | 29 | cbviinv |  |-  |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) | 
						
							| 31 | 30 | eleq2i |  |-  ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) ) | 
						
							| 32 | 9 | eleq1i |  |-  ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) | 
						
							| 33 | 31 32 | anbi12i |  |-  ( ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) <-> ( x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) /\ sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) ) | 
						
							| 34 | 33 | rabbia2 |  |-  { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 35 | 34 | a1i |  |-  ( n = K -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 36 | 13 | iineq1d |  |-  ( n = K -> |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) = |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) ) | 
						
							| 37 | 36 | eleq2d |  |-  ( n = K -> ( x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) <-> x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) ) ) | 
						
							| 38 | 16 | eleq1d |  |-  ( n = K -> ( sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) ) | 
						
							| 39 | 37 38 | anbi12d |  |-  ( n = K -> ( ( x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) /\ sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) <-> ( x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) /\ sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) ) ) | 
						
							| 40 | 39 | rabbidva2 |  |-  ( n = K -> { x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 41 | 35 40 | eqtrd |  |-  ( n = K -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 42 |  | eqid |  |-  { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 43 | 1 4 | eluzelz2d |  |-  ( ph -> K e. ZZ ) | 
						
							| 44 |  | uzid |  |-  ( K e. ZZ -> K e. ( ZZ>= ` K ) ) | 
						
							| 45 |  | ne0i |  |-  ( K e. ( ZZ>= ` K ) -> ( ZZ>= ` K ) =/= (/) ) | 
						
							| 46 | 43 44 45 | 3syl |  |-  ( ph -> ( ZZ>= ` K ) =/= (/) ) | 
						
							| 47 |  | fvex |  |-  ( F ` j ) e. _V | 
						
							| 48 | 47 | dmex |  |-  dom ( F ` j ) e. _V | 
						
							| 49 | 48 | rgenw |  |-  A. j e. ( ZZ>= ` K ) dom ( F ` j ) e. _V | 
						
							| 50 | 49 | a1i |  |-  ( ph -> A. j e. ( ZZ>= ` K ) dom ( F ` j ) e. _V ) | 
						
							| 51 | 46 50 | iinexd |  |-  ( ph -> |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) e. _V ) | 
						
							| 52 | 42 51 | rabexd |  |-  ( ph -> { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } e. _V ) | 
						
							| 53 | 2 41 4 52 | fvmptd3 |  |-  ( ph -> ( E ` K ) = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 54 | 23 28 53 | 3eqtrd |  |-  ( ph -> dom ( H ` K ) = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 55 |  | ssrab2 |  |-  { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } C_ |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | 
						
							| 56 | 55 | a1i |  |-  ( ph -> { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } C_ |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) ) | 
						
							| 57 | 43 44 | syl |  |-  ( ph -> K e. ( ZZ>= ` K ) ) | 
						
							| 58 |  | fveq2 |  |-  ( j = K -> ( F ` j ) = ( F ` K ) ) | 
						
							| 59 | 58 | dmeqd |  |-  ( j = K -> dom ( F ` j ) = dom ( F ` K ) ) | 
						
							| 60 |  | ssid |  |-  dom ( F ` K ) C_ dom ( F ` K ) | 
						
							| 61 | 60 | a1i |  |-  ( ph -> dom ( F ` K ) C_ dom ( F ` K ) ) | 
						
							| 62 | 57 59 61 | iinssd |  |-  ( ph -> |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) C_ dom ( F ` K ) ) | 
						
							| 63 | 56 62 | sstrd |  |-  ( ph -> { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } C_ dom ( F ` K ) ) | 
						
							| 64 | 54 63 | eqsstrd |  |-  ( ph -> dom ( H ` K ) C_ dom ( F ` K ) ) |