Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem1.z |
|- Z = ( ZZ>= ` M ) |
2 |
|
smflimsuplem1.e |
|- E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
3 |
|
smflimsuplem1.h |
|- H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
4 |
|
smflimsuplem1.k |
|- ( ph -> K e. Z ) |
5 |
|
fveq2 |
|- ( m = j -> ( F ` m ) = ( F ` j ) ) |
6 |
5
|
fveq1d |
|- ( m = j -> ( ( F ` m ) ` x ) = ( ( F ` j ) ` x ) ) |
7 |
6
|
cbvmptv |
|- ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) |
8 |
7
|
rneqi |
|- ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) |
9 |
8
|
supeq1i |
|- sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) |
10 |
9
|
mpteq2i |
|- ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` n ) |-> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) |
11 |
10
|
a1i |
|- ( n = K -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` n ) |-> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) |
12 |
|
fveq2 |
|- ( n = K -> ( E ` n ) = ( E ` K ) ) |
13 |
|
fveq2 |
|- ( n = K -> ( ZZ>= ` n ) = ( ZZ>= ` K ) ) |
14 |
13
|
mpteq1d |
|- ( n = K -> ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) = ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) ) |
15 |
14
|
rneqd |
|- ( n = K -> ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) = ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) ) |
16 |
15
|
supeq1d |
|- ( n = K -> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) = sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) |
17 |
12 16
|
mpteq12dv |
|- ( n = K -> ( x e. ( E ` n ) |-> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) |
18 |
11 17
|
eqtrd |
|- ( n = K -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) |
19 |
|
fvex |
|- ( E ` K ) e. _V |
20 |
19
|
mptex |
|- ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) e. _V |
21 |
20
|
a1i |
|- ( ph -> ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) e. _V ) |
22 |
3 18 4 21
|
fvmptd3 |
|- ( ph -> ( H ` K ) = ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) |
23 |
22
|
dmeqd |
|- ( ph -> dom ( H ` K ) = dom ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) ) |
24 |
|
xrltso |
|- < Or RR* |
25 |
24
|
supex |
|- sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. _V |
26 |
|
eqid |
|- ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) |
27 |
25 26
|
dmmpti |
|- dom ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) = ( E ` K ) |
28 |
27
|
a1i |
|- ( ph -> dom ( x e. ( E ` K ) |-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) ) = ( E ` K ) ) |
29 |
5
|
dmeqd |
|- ( m = j -> dom ( F ` m ) = dom ( F ` j ) ) |
30 |
29
|
cbviinv |
|- |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) |
31 |
30
|
eleq2i |
|- ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) ) |
32 |
9
|
eleq1i |
|- ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) |
33 |
31 32
|
anbi12i |
|- ( ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) <-> ( x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) /\ sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) ) |
34 |
33
|
rabbia2 |
|- { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } |
35 |
34
|
a1i |
|- ( n = K -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) |
36 |
13
|
iineq1d |
|- ( n = K -> |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) = |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) ) |
37 |
36
|
eleq2d |
|- ( n = K -> ( x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) <-> x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) ) ) |
38 |
16
|
eleq1d |
|- ( n = K -> ( sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) ) |
39 |
37 38
|
anbi12d |
|- ( n = K -> ( ( x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) /\ sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) <-> ( x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) /\ sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR ) ) ) |
40 |
39
|
rabbidva2 |
|- ( n = K -> { x e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` n ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) |
41 |
35 40
|
eqtrd |
|- ( n = K -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) |
42 |
|
eqid |
|- { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } |
43 |
1 4
|
eluzelz2d |
|- ( ph -> K e. ZZ ) |
44 |
|
uzid |
|- ( K e. ZZ -> K e. ( ZZ>= ` K ) ) |
45 |
|
ne0i |
|- ( K e. ( ZZ>= ` K ) -> ( ZZ>= ` K ) =/= (/) ) |
46 |
43 44 45
|
3syl |
|- ( ph -> ( ZZ>= ` K ) =/= (/) ) |
47 |
|
fvex |
|- ( F ` j ) e. _V |
48 |
47
|
dmex |
|- dom ( F ` j ) e. _V |
49 |
48
|
rgenw |
|- A. j e. ( ZZ>= ` K ) dom ( F ` j ) e. _V |
50 |
49
|
a1i |
|- ( ph -> A. j e. ( ZZ>= ` K ) dom ( F ` j ) e. _V ) |
51 |
46 50
|
iinexd |
|- ( ph -> |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) e. _V ) |
52 |
42 51
|
rabexd |
|- ( ph -> { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } e. _V ) |
53 |
2 41 4 52
|
fvmptd3 |
|- ( ph -> ( E ` K ) = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) |
54 |
23 28 53
|
3eqtrd |
|- ( ph -> dom ( H ` K ) = { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } ) |
55 |
|
ssrab2 |
|- { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } C_ |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) |
56 |
55
|
a1i |
|- ( ph -> { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } C_ |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) ) |
57 |
43 44
|
syl |
|- ( ph -> K e. ( ZZ>= ` K ) ) |
58 |
|
fveq2 |
|- ( j = K -> ( F ` j ) = ( F ` K ) ) |
59 |
58
|
dmeqd |
|- ( j = K -> dom ( F ` j ) = dom ( F ` K ) ) |
60 |
|
ssid |
|- dom ( F ` K ) C_ dom ( F ` K ) |
61 |
60
|
a1i |
|- ( ph -> dom ( F ` K ) C_ dom ( F ` K ) ) |
62 |
57 59 61
|
iinssd |
|- ( ph -> |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) C_ dom ( F ` K ) ) |
63 |
56 62
|
sstrd |
|- ( ph -> { x e. |^|_ j e. ( ZZ>= ` K ) dom ( F ` j ) | sup ( ran ( j e. ( ZZ>= ` K ) |-> ( ( F ` j ) ` x ) ) , RR* , < ) e. RR } C_ dom ( F ` K ) ) |
64 |
54 63
|
eqsstrd |
|- ( ph -> dom ( H ` K ) C_ dom ( F ` K ) ) |