Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem2.p |
|- F/ m ph |
2 |
|
smflimsuplem2.m |
|- ( ph -> M e. ZZ ) |
3 |
|
smflimsuplem2.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
smflimsuplem2.s |
|- ( ph -> S e. SAlg ) |
5 |
|
smflimsuplem2.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
6 |
|
smflimsuplem2.e |
|- E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
7 |
|
smflimsuplem2.h |
|- H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
8 |
|
smflimsuplem2.n |
|- ( ph -> n e. Z ) |
9 |
|
smflimsuplem2.r |
|- ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) |
10 |
|
smflimsuplem2.x |
|- ( ph -> X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
11 |
|
eqid |
|- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
12 |
8 3
|
eleqtrdi |
|- ( ph -> n e. ( ZZ>= ` M ) ) |
13 |
|
uzss |
|- ( n e. ( ZZ>= ` M ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` M ) ) |
14 |
12 13
|
syl |
|- ( ph -> ( ZZ>= ` n ) C_ ( ZZ>= ` M ) ) |
15 |
14 3
|
sseqtrrdi |
|- ( ph -> ( ZZ>= ` n ) C_ Z ) |
16 |
15
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ZZ>= ` n ) C_ Z ) |
17 |
|
simpr |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` n ) ) |
18 |
16 17
|
sseldd |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> m e. Z ) |
19 |
4
|
adantr |
|- ( ( ph /\ m e. Z ) -> S e. SAlg ) |
20 |
5
|
ffvelrnda |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
21 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
22 |
19 20 21
|
smff |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
23 |
18 22
|
syldan |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
24 |
|
iinss2 |
|- ( m e. ( ZZ>= ` n ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ dom ( F ` m ) ) |
25 |
24
|
adantl |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ dom ( F ` m ) ) |
26 |
10
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
27 |
25 26
|
sseldd |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> X e. dom ( F ` m ) ) |
28 |
23 27
|
ffvelrnd |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) e. RR ) |
29 |
|
nfmpt1 |
|- F/_ m ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) |
30 |
|
nfmpt1 |
|- F/_ m ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) |
31 |
|
eluzelz |
|- ( n e. ( ZZ>= ` M ) -> n e. ZZ ) |
32 |
12 31
|
syl |
|- ( ph -> n e. ZZ ) |
33 |
|
eqid |
|- ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) |
34 |
1 28 33
|
fmptdf |
|- ( ph -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) : ( ZZ>= ` n ) --> RR ) |
35 |
34
|
ffnd |
|- ( ph -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) Fn ( ZZ>= ` n ) ) |
36 |
|
nfcv |
|- F/_ m ( ZZ>= ` M ) |
37 |
|
fvexd |
|- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> ( ( F ` m ) ` X ) e. _V ) |
38 |
36 1 37
|
mptfnd |
|- ( ph -> ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) Fn ( ZZ>= ` M ) ) |
39 |
33
|
a1i |
|- ( ph -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) |
40 |
|
fvexd |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) e. _V ) |
41 |
39 40
|
fvmpt2d |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` m ) = ( ( F ` m ) ` X ) ) |
42 |
18 3
|
eleqtrdi |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` M ) ) |
43 |
|
eqid |
|- ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) = ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) |
44 |
43
|
fvmpt2 |
|- ( ( m e. ( ZZ>= ` M ) /\ ( ( F ` m ) ` X ) e. _V ) -> ( ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ` m ) = ( ( F ` m ) ` X ) ) |
45 |
42 40 44
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ` m ) = ( ( F ` m ) ` X ) ) |
46 |
41 45
|
eqtr4d |
|- ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` m ) = ( ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ` m ) ) |
47 |
1 29 30 32 35 2 38 32 46
|
limsupequz |
|- ( ph -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ) ) |
48 |
3
|
eqcomi |
|- ( ZZ>= ` M ) = Z |
49 |
48
|
mpteq1i |
|- ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) |
50 |
49
|
fveq2i |
|- ( limsup ` ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) |
51 |
50
|
a1i |
|- ( ph -> ( limsup ` ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
52 |
47 51
|
eqtrd |
|- ( ph -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
53 |
9
|
renepnfd |
|- ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) =/= +oo ) |
54 |
52 53
|
eqnetrd |
|- ( ph -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) =/= +oo ) |
55 |
1 11 28 54
|
limsupubuzmpt |
|- ( ph -> E. y e. RR A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) <_ y ) |
56 |
|
uzid |
|- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
57 |
|
ne0i |
|- ( n e. ( ZZ>= ` n ) -> ( ZZ>= ` n ) =/= (/) ) |
58 |
32 56 57
|
3syl |
|- ( ph -> ( ZZ>= ` n ) =/= (/) ) |
59 |
1 58 28
|
supxrre3rnmpt |
|- ( ph -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR <-> E. y e. RR A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) <_ y ) ) |
60 |
55 59
|
mpbird |
|- ( ph -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) |
61 |
10 60
|
jca |
|- ( ph -> ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) |
62 |
|
fveq2 |
|- ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
63 |
62
|
mpteq2dv |
|- ( x = y -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) ) |
64 |
63
|
rneqd |
|- ( x = y -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) ) |
65 |
64
|
supeq1d |
|- ( x = y -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) ) |
66 |
65
|
eleq1d |
|- ( x = y -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR ) ) |
67 |
66
|
cbvrabv |
|- { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { y e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR } |
68 |
67
|
eleq2i |
|- ( X e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } <-> X e. { y e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR } ) |
69 |
|
fveq2 |
|- ( y = X -> ( ( F ` m ) ` y ) = ( ( F ` m ) ` X ) ) |
70 |
69
|
mpteq2dv |
|- ( y = X -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) |
71 |
70
|
rneqd |
|- ( y = X -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) |
72 |
71
|
supeq1d |
|- ( y = X -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) ) |
73 |
72
|
eleq1d |
|- ( y = X -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR <-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) |
74 |
73
|
elrab |
|- ( X e. { y e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR } <-> ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) |
75 |
68 74
|
bitri |
|- ( X e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } <-> ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) |
76 |
61 75
|
sylibr |
|- ( ph -> X e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
77 |
|
id |
|- ( ph -> ph ) |
78 |
7
|
a1i |
|- ( ph -> H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) ) |
79 |
|
nfcv |
|- F/_ x Z |
80 |
|
nfrab1 |
|- F/_ x { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } |
81 |
79 80
|
nfmpt |
|- F/_ x ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
82 |
6 81
|
nfcxfr |
|- F/_ x E |
83 |
|
nfcv |
|- F/_ x n |
84 |
82 83
|
nffv |
|- F/_ x ( E ` n ) |
85 |
|
fvex |
|- ( E ` n ) e. _V |
86 |
84 85
|
mptexf |
|- ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V |
87 |
86
|
a1i |
|- ( ( ph /\ n e. Z ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V ) |
88 |
78 87
|
fvmpt2d |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
89 |
77 8 88
|
syl2anc |
|- ( ph -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
90 |
89
|
dmeqd |
|- ( ph -> dom ( H ` n ) = dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
91 |
|
nfcv |
|- F/_ y ( E ` n ) |
92 |
|
nfcv |
|- F/_ y sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) |
93 |
|
nfcv |
|- F/_ x sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) |
94 |
84 91 92 93 65
|
cbvmptf |
|- ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( y e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) ) |
95 |
|
xrltso |
|- < Or RR* |
96 |
95
|
supex |
|- sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. _V |
97 |
96
|
a1i |
|- ( ( ph /\ y e. ( E ` n ) ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. _V ) |
98 |
94 97
|
dmmptd |
|- ( ph -> dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( E ` n ) ) |
99 |
|
eqid |
|- { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } |
100 |
|
fvex |
|- ( F ` m ) e. _V |
101 |
100
|
dmex |
|- dom ( F ` m ) e. _V |
102 |
101
|
rgenw |
|- A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V |
103 |
102
|
a1i |
|- ( ph -> A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
104 |
58 103
|
iinexd |
|- ( ph -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
105 |
99 104
|
rabexd |
|- ( ph -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) |
106 |
6
|
fvmpt2 |
|- ( ( n e. Z /\ { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
107 |
8 105 106
|
syl2anc |
|- ( ph -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
108 |
90 98 107
|
3eqtrrd |
|- ( ph -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = dom ( H ` n ) ) |
109 |
76 108
|
eleqtrd |
|- ( ph -> X e. dom ( H ` n ) ) |