| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem2.p |  |-  F/ m ph | 
						
							| 2 |  | smflimsuplem2.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | smflimsuplem2.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 4 |  | smflimsuplem2.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 5 |  | smflimsuplem2.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 6 |  | smflimsuplem2.e |  |-  E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 7 |  | smflimsuplem2.h |  |-  H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 8 |  | smflimsuplem2.n |  |-  ( ph -> n e. Z ) | 
						
							| 9 |  | smflimsuplem2.r |  |-  ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) | 
						
							| 10 |  | smflimsuplem2.x |  |-  ( ph -> X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 11 |  | eqid |  |-  ( ZZ>= ` n ) = ( ZZ>= ` n ) | 
						
							| 12 | 8 3 | eleqtrdi |  |-  ( ph -> n e. ( ZZ>= ` M ) ) | 
						
							| 13 |  | uzss |  |-  ( n e. ( ZZ>= ` M ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` M ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ( ZZ>= ` n ) C_ ( ZZ>= ` M ) ) | 
						
							| 15 | 14 3 | sseqtrrdi |  |-  ( ph -> ( ZZ>= ` n ) C_ Z ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ZZ>= ` n ) C_ Z ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` n ) ) | 
						
							| 18 | 16 17 | sseldd |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> m e. Z ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ m e. Z ) -> S e. SAlg ) | 
						
							| 20 | 5 | ffvelcdmda |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) | 
						
							| 21 |  | eqid |  |-  dom ( F ` m ) = dom ( F ` m ) | 
						
							| 22 | 19 20 21 | smff |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) | 
						
							| 23 | 18 22 | syldan |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) : dom ( F ` m ) --> RR ) | 
						
							| 24 |  | iinss2 |  |-  ( m e. ( ZZ>= ` n ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ dom ( F ` m ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) C_ dom ( F ` m ) ) | 
						
							| 26 | 10 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 27 | 25 26 | sseldd |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> X e. dom ( F ` m ) ) | 
						
							| 28 | 23 27 | ffvelcdmd |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) e. RR ) | 
						
							| 29 |  | nfmpt1 |  |-  F/_ m ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) | 
						
							| 30 |  | nfmpt1 |  |-  F/_ m ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) | 
						
							| 31 |  | eluzelz |  |-  ( n e. ( ZZ>= ` M ) -> n e. ZZ ) | 
						
							| 32 | 12 31 | syl |  |-  ( ph -> n e. ZZ ) | 
						
							| 33 |  | eqid |  |-  ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) | 
						
							| 34 | 1 28 33 | fmptdf |  |-  ( ph -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) : ( ZZ>= ` n ) --> RR ) | 
						
							| 35 | 34 | ffnd |  |-  ( ph -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) Fn ( ZZ>= ` n ) ) | 
						
							| 36 |  | nfcv |  |-  F/_ m ( ZZ>= ` M ) | 
						
							| 37 |  | fvexd |  |-  ( ( ph /\ m e. ( ZZ>= ` M ) ) -> ( ( F ` m ) ` X ) e. _V ) | 
						
							| 38 | 36 1 37 | mptfnd |  |-  ( ph -> ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) Fn ( ZZ>= ` M ) ) | 
						
							| 39 | 33 | a1i |  |-  ( ph -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) | 
						
							| 40 |  | fvexd |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) e. _V ) | 
						
							| 41 | 39 40 | fvmpt2d |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` m ) = ( ( F ` m ) ` X ) ) | 
						
							| 42 | 18 3 | eleqtrdi |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` M ) ) | 
						
							| 43 |  | eqid |  |-  ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) = ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) | 
						
							| 44 | 43 | fvmpt2 |  |-  ( ( m e. ( ZZ>= ` M ) /\ ( ( F ` m ) ` X ) e. _V ) -> ( ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ` m ) = ( ( F ` m ) ` X ) ) | 
						
							| 45 | 42 40 44 | syl2anc |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ` m ) = ( ( F ` m ) ` X ) ) | 
						
							| 46 | 41 45 | eqtr4d |  |-  ( ( ph /\ m e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` m ) = ( ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ` m ) ) | 
						
							| 47 | 1 29 30 32 35 2 38 32 46 | limsupequz |  |-  ( ph -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 48 | 3 | eqcomi |  |-  ( ZZ>= ` M ) = Z | 
						
							| 49 | 48 | mpteq1i |  |-  ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) | 
						
							| 50 | 49 | fveq2i |  |-  ( limsup ` ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) | 
						
							| 51 | 50 | a1i |  |-  ( ph -> ( limsup ` ( m e. ( ZZ>= ` M ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 52 | 47 51 | eqtrd |  |-  ( ph -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 53 | 9 | renepnfd |  |-  ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) =/= +oo ) | 
						
							| 54 | 52 53 | eqnetrd |  |-  ( ph -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) =/= +oo ) | 
						
							| 55 | 1 11 28 54 | limsupubuzmpt |  |-  ( ph -> E. y e. RR A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) <_ y ) | 
						
							| 56 |  | uzid |  |-  ( n e. ZZ -> n e. ( ZZ>= ` n ) ) | 
						
							| 57 |  | ne0i |  |-  ( n e. ( ZZ>= ` n ) -> ( ZZ>= ` n ) =/= (/) ) | 
						
							| 58 | 32 56 57 | 3syl |  |-  ( ph -> ( ZZ>= ` n ) =/= (/) ) | 
						
							| 59 | 1 58 28 | supxrre3rnmpt |  |-  ( ph -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR <-> E. y e. RR A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) <_ y ) ) | 
						
							| 60 | 55 59 | mpbird |  |-  ( ph -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) | 
						
							| 61 | 10 60 | jca |  |-  ( ph -> ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) | 
						
							| 62 |  | fveq2 |  |-  ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) | 
						
							| 63 | 62 | mpteq2dv |  |-  ( x = y -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) ) | 
						
							| 64 | 63 | rneqd |  |-  ( x = y -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) ) | 
						
							| 65 | 64 | supeq1d |  |-  ( x = y -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) ) | 
						
							| 66 | 65 | eleq1d |  |-  ( x = y -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR ) ) | 
						
							| 67 | 66 | cbvrabv |  |-  { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { y e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR } | 
						
							| 68 | 67 | eleq2i |  |-  ( X e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } <-> X e. { y e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR } ) | 
						
							| 69 |  | fveq2 |  |-  ( y = X -> ( ( F ` m ) ` y ) = ( ( F ` m ) ` X ) ) | 
						
							| 70 | 69 | mpteq2dv |  |-  ( y = X -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) | 
						
							| 71 | 70 | rneqd |  |-  ( y = X -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) | 
						
							| 72 | 71 | supeq1d |  |-  ( y = X -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) ) | 
						
							| 73 | 72 | eleq1d |  |-  ( y = X -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR <-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) | 
						
							| 74 | 73 | elrab |  |-  ( X e. { y e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR } <-> ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) | 
						
							| 75 | 68 74 | bitri |  |-  ( X e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } <-> ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) | 
						
							| 76 | 61 75 | sylibr |  |-  ( ph -> X e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 77 |  | id |  |-  ( ph -> ph ) | 
						
							| 78 | 7 | a1i |  |-  ( ph -> H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) ) | 
						
							| 79 |  | nfcv |  |-  F/_ x Z | 
						
							| 80 |  | nfrab1 |  |-  F/_ x { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 81 | 79 80 | nfmpt |  |-  F/_ x ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 82 | 6 81 | nfcxfr |  |-  F/_ x E | 
						
							| 83 |  | nfcv |  |-  F/_ x n | 
						
							| 84 | 82 83 | nffv |  |-  F/_ x ( E ` n ) | 
						
							| 85 |  | fvex |  |-  ( E ` n ) e. _V | 
						
							| 86 | 84 85 | mptexf |  |-  ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V | 
						
							| 87 | 86 | a1i |  |-  ( ( ph /\ n e. Z ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V ) | 
						
							| 88 | 78 87 | fvmpt2d |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 89 | 77 8 88 | syl2anc |  |-  ( ph -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 90 | 89 | dmeqd |  |-  ( ph -> dom ( H ` n ) = dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 91 |  | nfcv |  |-  F/_ y ( E ` n ) | 
						
							| 92 |  | nfcv |  |-  F/_ y sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) | 
						
							| 93 |  | nfcv |  |-  F/_ x sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) | 
						
							| 94 | 84 91 92 93 65 | cbvmptf |  |-  ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( y e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) ) | 
						
							| 95 |  | xrltso |  |-  < Or RR* | 
						
							| 96 | 95 | supex |  |-  sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. _V | 
						
							| 97 | 96 | a1i |  |-  ( ( ph /\ y e. ( E ` n ) ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. _V ) | 
						
							| 98 | 94 97 | dmmptd |  |-  ( ph -> dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( E ` n ) ) | 
						
							| 99 |  | eqid |  |-  { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 100 |  | fvex |  |-  ( F ` m ) e. _V | 
						
							| 101 | 100 | dmex |  |-  dom ( F ` m ) e. _V | 
						
							| 102 | 101 | rgenw |  |-  A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V | 
						
							| 103 | 102 | a1i |  |-  ( ph -> A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 104 | 58 103 | iinexd |  |-  ( ph -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 105 | 99 104 | rabexd |  |-  ( ph -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) | 
						
							| 106 | 6 | fvmpt2 |  |-  ( ( n e. Z /\ { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 107 | 8 105 106 | syl2anc |  |-  ( ph -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 108 | 90 98 107 | 3eqtrrd |  |-  ( ph -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = dom ( H ` n ) ) | 
						
							| 109 | 76 108 | eleqtrd |  |-  ( ph -> X e. dom ( H ` n ) ) |