| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsuplem3.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
smflimsuplem3.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
smflimsuplem3.s |
|- ( ph -> S e. SAlg ) |
| 4 |
|
smflimsuplem3.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
| 5 |
|
smflimsuplem3.e |
|- E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 6 |
|
smflimsuplem3.h |
|- H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
| 7 |
|
nfv |
|- F/ n ph |
| 8 |
|
nfv |
|- F/ x ph |
| 9 |
|
nfv |
|- F/ k ph |
| 10 |
|
fvex |
|- ( H ` n ) e. _V |
| 11 |
10
|
dmex |
|- dom ( H ` n ) e. _V |
| 12 |
11
|
a1i |
|- ( ( ph /\ n e. Z ) -> dom ( H ` n ) e. _V ) |
| 13 |
|
fvexd |
|- ( ( ph /\ n e. Z /\ x e. dom ( H ` n ) ) -> ( ( H ` n ) ` x ) e. _V ) |
| 14 |
3
|
adantr |
|- ( ( ph /\ n e. Z ) -> S e. SAlg ) |
| 15 |
5
|
a1i |
|- ( ph -> E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) ) |
| 16 |
|
eqid |
|- { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } |
| 17 |
2
|
eluzelz2 |
|- ( n e. Z -> n e. ZZ ) |
| 18 |
|
eqid |
|- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
| 19 |
17 18
|
uzn0d |
|- ( n e. Z -> ( ZZ>= ` n ) =/= (/) ) |
| 20 |
|
fvex |
|- ( F ` m ) e. _V |
| 21 |
20
|
dmex |
|- dom ( F ` m ) e. _V |
| 22 |
21
|
rgenw |
|- A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V |
| 23 |
22
|
a1i |
|- ( n e. Z -> A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
| 24 |
19 23
|
iinexd |
|- ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
| 26 |
16 25
|
rabexd |
|- ( ( ph /\ n e. Z ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) |
| 27 |
15 26
|
fvmpt2d |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 28 |
|
fvres |
|- ( m e. ( ZZ>= ` n ) -> ( ( F |` ( ZZ>= ` n ) ) ` m ) = ( F ` m ) ) |
| 29 |
28
|
eqcomd |
|- ( m e. ( ZZ>= ` n ) -> ( F ` m ) = ( ( F |` ( ZZ>= ` n ) ) ` m ) ) |
| 30 |
29
|
adantl |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) = ( ( F |` ( ZZ>= ` n ) ) ` m ) ) |
| 31 |
30
|
dmeqd |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> dom ( F ` m ) = dom ( ( F |` ( ZZ>= ` n ) ) ` m ) ) |
| 32 |
31
|
iineq2dv |
|- ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) ) |
| 33 |
32
|
eleq2d |
|- ( ( ph /\ n e. Z ) -> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) ) ) |
| 34 |
29
|
fveq1d |
|- ( m e. ( ZZ>= ` n ) -> ( ( F ` m ) ` x ) = ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) |
| 35 |
34
|
mpteq2ia |
|- ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) |
| 36 |
35
|
rneqi |
|- ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) |
| 37 |
36
|
supeq1i |
|- sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) |
| 38 |
37
|
a1i |
|- ( ( ph /\ n e. Z ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) |
| 39 |
38
|
eleq1d |
|- ( ( ph /\ n e. Z ) -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR ) ) |
| 40 |
33 39
|
anbi12d |
|- ( ( ph /\ n e. Z ) -> ( ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) <-> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR ) ) ) |
| 41 |
40
|
rabbidva2 |
|- ( ( ph /\ n e. Z ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 42 |
27 41
|
eqtrd |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 43 |
42 38
|
mpteq12dv |
|- ( ( ph /\ n e. Z ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) ) |
| 44 |
|
nfcv |
|- F/_ m ( F |` ( ZZ>= ` n ) ) |
| 45 |
|
nfcv |
|- F/_ x ( F |` ( ZZ>= ` n ) ) |
| 46 |
17
|
adantl |
|- ( ( ph /\ n e. Z ) -> n e. ZZ ) |
| 47 |
4
|
adantr |
|- ( ( ph /\ n e. Z ) -> F : Z --> ( SMblFn ` S ) ) |
| 48 |
2
|
eleq2i |
|- ( n e. Z <-> n e. ( ZZ>= ` M ) ) |
| 49 |
48
|
biimpi |
|- ( n e. Z -> n e. ( ZZ>= ` M ) ) |
| 50 |
|
uzss |
|- ( n e. ( ZZ>= ` M ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` M ) ) |
| 51 |
49 50
|
syl |
|- ( n e. Z -> ( ZZ>= ` n ) C_ ( ZZ>= ` M ) ) |
| 52 |
51 2
|
sseqtrrdi |
|- ( n e. Z -> ( ZZ>= ` n ) C_ Z ) |
| 53 |
52
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( ZZ>= ` n ) C_ Z ) |
| 54 |
47 53
|
fssresd |
|- ( ( ph /\ n e. Z ) -> ( F |` ( ZZ>= ` n ) ) : ( ZZ>= ` n ) --> ( SMblFn ` S ) ) |
| 55 |
|
eqid |
|- { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |
| 56 |
|
eqid |
|- ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) = ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) |
| 57 |
44 45 46 18 14 54 55 56
|
smfsupxr |
|- ( ( ph /\ n e. Z ) -> ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) e. ( SMblFn ` S ) ) |
| 58 |
43 57
|
eqeltrd |
|- ( ( ph /\ n e. Z ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. ( SMblFn ` S ) ) |
| 59 |
58 6
|
fmptd |
|- ( ph -> H : Z --> ( SMblFn ` S ) ) |
| 60 |
59
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) e. ( SMblFn ` S ) ) |
| 61 |
|
eqid |
|- dom ( H ` n ) = dom ( H ` n ) |
| 62 |
14 60 61
|
smff |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) : dom ( H ` n ) --> RR ) |
| 63 |
62
|
feqmptd |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) = ( x e. dom ( H ` n ) |-> ( ( H ` n ) ` x ) ) ) |
| 64 |
63
|
eqcomd |
|- ( ( ph /\ n e. Z ) -> ( x e. dom ( H ` n ) |-> ( ( H ` n ) ` x ) ) = ( H ` n ) ) |
| 65 |
64 60
|
eqeltrd |
|- ( ( ph /\ n e. Z ) -> ( x e. dom ( H ` n ) |-> ( ( H ` n ) ` x ) ) e. ( SMblFn ` S ) ) |
| 66 |
|
eqid |
|- { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } = { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } |
| 67 |
|
eqid |
|- ( x e. { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( n e. Z |-> ( ( H ` n ) ` x ) ) ) ) = ( x e. { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( n e. Z |-> ( ( H ` n ) ` x ) ) ) ) |
| 68 |
7 8 9 1 2 12 13 3 65 66 67
|
smflimmpt |
|- ( ph -> ( x e. { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( n e. Z |-> ( ( H ` n ) ` x ) ) ) ) e. ( SMblFn ` S ) ) |