| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem3.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | smflimsuplem3.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | smflimsuplem3.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smflimsuplem3.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 5 |  | smflimsuplem3.e |  |-  E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 6 |  | smflimsuplem3.h |  |-  H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 7 |  | nfv |  |-  F/ n ph | 
						
							| 8 |  | nfv |  |-  F/ x ph | 
						
							| 9 |  | nfv |  |-  F/ k ph | 
						
							| 10 |  | fvex |  |-  ( H ` n ) e. _V | 
						
							| 11 | 10 | dmex |  |-  dom ( H ` n ) e. _V | 
						
							| 12 | 11 | a1i |  |-  ( ( ph /\ n e. Z ) -> dom ( H ` n ) e. _V ) | 
						
							| 13 |  | fvexd |  |-  ( ( ph /\ n e. Z /\ x e. dom ( H ` n ) ) -> ( ( H ` n ) ` x ) e. _V ) | 
						
							| 14 | 3 | adantr |  |-  ( ( ph /\ n e. Z ) -> S e. SAlg ) | 
						
							| 15 | 5 | a1i |  |-  ( ph -> E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) ) | 
						
							| 16 |  | eqid |  |-  { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 17 | 2 | eluzelz2 |  |-  ( n e. Z -> n e. ZZ ) | 
						
							| 18 |  | eqid |  |-  ( ZZ>= ` n ) = ( ZZ>= ` n ) | 
						
							| 19 | 17 18 | uzn0d |  |-  ( n e. Z -> ( ZZ>= ` n ) =/= (/) ) | 
						
							| 20 |  | fvex |  |-  ( F ` m ) e. _V | 
						
							| 21 | 20 | dmex |  |-  dom ( F ` m ) e. _V | 
						
							| 22 | 21 | rgenw |  |-  A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V | 
						
							| 23 | 22 | a1i |  |-  ( n e. Z -> A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 24 | 19 23 | iinexd |  |-  ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 26 | 16 25 | rabexd |  |-  ( ( ph /\ n e. Z ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) | 
						
							| 27 | 15 26 | fvmpt2d |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 28 |  | fvres |  |-  ( m e. ( ZZ>= ` n ) -> ( ( F |` ( ZZ>= ` n ) ) ` m ) = ( F ` m ) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( m e. ( ZZ>= ` n ) -> ( F ` m ) = ( ( F |` ( ZZ>= ` n ) ) ` m ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) = ( ( F |` ( ZZ>= ` n ) ) ` m ) ) | 
						
							| 31 | 30 | dmeqd |  |-  ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> dom ( F ` m ) = dom ( ( F |` ( ZZ>= ` n ) ) ` m ) ) | 
						
							| 32 | 31 | iineq2dv |  |-  ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) ) | 
						
							| 33 | 32 | eleq2d |  |-  ( ( ph /\ n e. Z ) -> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) ) ) | 
						
							| 34 | 29 | fveq1d |  |-  ( m e. ( ZZ>= ` n ) -> ( ( F ` m ) ` x ) = ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) | 
						
							| 35 | 34 | mpteq2ia |  |-  ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) | 
						
							| 36 | 35 | rneqi |  |-  ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) | 
						
							| 37 | 36 | supeq1i |  |-  sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) | 
						
							| 38 | 37 | a1i |  |-  ( ( ph /\ n e. Z ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 39 | 38 | eleq1d |  |-  ( ( ph /\ n e. Z ) -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR ) ) | 
						
							| 40 | 33 39 | anbi12d |  |-  ( ( ph /\ n e. Z ) -> ( ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) <-> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR ) ) ) | 
						
							| 41 | 40 | rabbidva2 |  |-  ( ( ph /\ n e. Z ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 42 | 27 41 | eqtrd |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 43 | 42 38 | mpteq12dv |  |-  ( ( ph /\ n e. Z ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 44 |  | nfcv |  |-  F/_ m ( F |` ( ZZ>= ` n ) ) | 
						
							| 45 |  | nfcv |  |-  F/_ x ( F |` ( ZZ>= ` n ) ) | 
						
							| 46 | 17 | adantl |  |-  ( ( ph /\ n e. Z ) -> n e. ZZ ) | 
						
							| 47 | 4 | adantr |  |-  ( ( ph /\ n e. Z ) -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 48 | 2 | eleq2i |  |-  ( n e. Z <-> n e. ( ZZ>= ` M ) ) | 
						
							| 49 | 48 | biimpi |  |-  ( n e. Z -> n e. ( ZZ>= ` M ) ) | 
						
							| 50 |  | uzss |  |-  ( n e. ( ZZ>= ` M ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` M ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( n e. Z -> ( ZZ>= ` n ) C_ ( ZZ>= ` M ) ) | 
						
							| 52 | 51 2 | sseqtrrdi |  |-  ( n e. Z -> ( ZZ>= ` n ) C_ Z ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ph /\ n e. Z ) -> ( ZZ>= ` n ) C_ Z ) | 
						
							| 54 | 47 53 | fssresd |  |-  ( ( ph /\ n e. Z ) -> ( F |` ( ZZ>= ` n ) ) : ( ZZ>= ` n ) --> ( SMblFn ` S ) ) | 
						
							| 55 |  | eqid |  |-  { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 56 |  | eqid |  |-  ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) = ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 57 | 44 45 46 18 14 54 55 56 | smfsupxr |  |-  ( ( ph /\ n e. Z ) -> ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( ( F |` ( ZZ>= ` n ) ) ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) e. RR } |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( ( F |` ( ZZ>= ` n ) ) ` m ) ` x ) ) , RR* , < ) ) e. ( SMblFn ` S ) ) | 
						
							| 58 | 43 57 | eqeltrd |  |-  ( ( ph /\ n e. Z ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. ( SMblFn ` S ) ) | 
						
							| 59 | 58 6 | fmptd |  |-  ( ph -> H : Z --> ( SMblFn ` S ) ) | 
						
							| 60 | 59 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) e. ( SMblFn ` S ) ) | 
						
							| 61 |  | eqid |  |-  dom ( H ` n ) = dom ( H ` n ) | 
						
							| 62 | 14 60 61 | smff |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) : dom ( H ` n ) --> RR ) | 
						
							| 63 | 62 | feqmptd |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) = ( x e. dom ( H ` n ) |-> ( ( H ` n ) ` x ) ) ) | 
						
							| 64 | 63 | eqcomd |  |-  ( ( ph /\ n e. Z ) -> ( x e. dom ( H ` n ) |-> ( ( H ` n ) ` x ) ) = ( H ` n ) ) | 
						
							| 65 | 64 60 | eqeltrd |  |-  ( ( ph /\ n e. Z ) -> ( x e. dom ( H ` n ) |-> ( ( H ` n ) ` x ) ) e. ( SMblFn ` S ) ) | 
						
							| 66 |  | eqid |  |-  { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } = { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } | 
						
							| 67 |  | eqid |  |-  ( x e. { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( n e. Z |-> ( ( H ` n ) ` x ) ) ) ) = ( x e. { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( n e. Z |-> ( ( H ` n ) ` x ) ) ) ) | 
						
							| 68 | 7 8 9 1 2 12 13 3 65 66 67 | smflimmpt |  |-  ( ph -> ( x e. { x e. U_ k e. Z |^|_ n e. ( ZZ>= ` k ) dom ( H ` n ) | ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( n e. Z |-> ( ( H ` n ) ` x ) ) ) ) e. ( SMblFn ` S ) ) |