Description: The limit of the ( Hn ) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smflimsuplem3.m | |
|
smflimsuplem3.z | |
||
smflimsuplem3.s | |
||
smflimsuplem3.f | |
||
smflimsuplem3.e | |
||
smflimsuplem3.h | |
||
Assertion | smflimsuplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflimsuplem3.m | |
|
2 | smflimsuplem3.z | |
|
3 | smflimsuplem3.s | |
|
4 | smflimsuplem3.f | |
|
5 | smflimsuplem3.e | |
|
6 | smflimsuplem3.h | |
|
7 | nfv | |
|
8 | nfv | |
|
9 | nfv | |
|
10 | fvex | |
|
11 | 10 | dmex | |
12 | 11 | a1i | |
13 | fvexd | |
|
14 | 3 | adantr | |
15 | 5 | a1i | |
16 | eqid | |
|
17 | 2 | eluzelz2 | |
18 | eqid | |
|
19 | 17 18 | uzn0d | |
20 | fvex | |
|
21 | 20 | dmex | |
22 | 21 | rgenw | |
23 | 22 | a1i | |
24 | 19 23 | iinexd | |
25 | 24 | adantl | |
26 | 16 25 | rabexd | |
27 | 15 26 | fvmpt2d | |
28 | fvres | |
|
29 | 28 | eqcomd | |
30 | 29 | adantl | |
31 | 30 | dmeqd | |
32 | 31 | iineq2dv | |
33 | 32 | eleq2d | |
34 | 29 | fveq1d | |
35 | 34 | mpteq2ia | |
36 | 35 | rneqi | |
37 | 36 | supeq1i | |
38 | 37 | a1i | |
39 | 38 | eleq1d | |
40 | 33 39 | anbi12d | |
41 | 40 | rabbidva2 | |
42 | 27 41 | eqtrd | |
43 | 42 38 | mpteq12dv | |
44 | nfcv | |
|
45 | nfcv | |
|
46 | 17 | adantl | |
47 | 4 | adantr | |
48 | 2 | eleq2i | |
49 | 48 | biimpi | |
50 | uzss | |
|
51 | 49 50 | syl | |
52 | 51 2 | sseqtrrdi | |
53 | 52 | adantl | |
54 | 47 53 | fssresd | |
55 | eqid | |
|
56 | eqid | |
|
57 | 44 45 46 18 14 54 55 56 | smfsupxr | |
58 | 43 57 | eqeltrd | |
59 | 58 6 | fmptd | |
60 | 59 | ffvelcdmda | |
61 | eqid | |
|
62 | 14 60 61 | smff | |
63 | 62 | feqmptd | |
64 | 63 | eqcomd | |
65 | 64 60 | eqeltrd | |
66 | eqid | |
|
67 | eqid | |
|
68 | 7 8 9 1 2 12 13 3 65 66 67 | smflimmpt | |