Metamath Proof Explorer


Theorem smfsupxr

Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfsupxr.n _ n F
smfsupxr.x _ x F
smfsupxr.m φ M
smfsupxr.z Z = M
smfsupxr.s φ S SAlg
smfsupxr.f φ F : Z SMblFn S
smfsupxr.d D = x n Z dom F n | sup ran n Z F n x * <
smfsupxr.g G = x D sup ran n Z F n x * <
Assertion smfsupxr φ G SMblFn S

Proof

Step Hyp Ref Expression
1 smfsupxr.n _ n F
2 smfsupxr.x _ x F
3 smfsupxr.m φ M
4 smfsupxr.z Z = M
5 smfsupxr.s φ S SAlg
6 smfsupxr.f φ F : Z SMblFn S
7 smfsupxr.d D = x n Z dom F n | sup ran n Z F n x * <
8 smfsupxr.g G = x D sup ran n Z F n x * <
9 8 a1i φ G = x D sup ran n Z F n x * <
10 7 a1i φ D = x n Z dom F n | sup ran n Z F n x * <
11 nfv n φ
12 nfcv _ n x
13 nfii1 _ n n Z dom F n
14 12 13 nfel n x n Z dom F n
15 11 14 nfan n φ x n Z dom F n
16 3 4 uzn0d φ Z
17 16 adantr φ x n Z dom F n Z
18 5 adantr φ n Z S SAlg
19 6 ffvelrnda φ n Z F n SMblFn S
20 eqid dom F n = dom F n
21 18 19 20 smff φ n Z F n : dom F n
22 21 adantlr φ x n Z dom F n n Z F n : dom F n
23 eliinid x n Z dom F n n Z x dom F n
24 23 adantll φ x n Z dom F n n Z x dom F n
25 22 24 ffvelrnd φ x n Z dom F n n Z F n x
26 15 17 25 supxrre3rnmpt φ x n Z dom F n sup ran n Z F n x * < y n Z F n x y
27 26 rabbidva φ x n Z dom F n | sup ran n Z F n x * < = x n Z dom F n | y n Z F n x y
28 10 27 eqtrd φ D = x n Z dom F n | y n Z F n x y
29 nfmpt1 _ n n Z F n x
30 29 nfrn _ n ran n Z F n x
31 nfcv _ n *
32 nfcv _ n <
33 30 31 32 nfsup _ n sup ran n Z F n x * <
34 nfcv _ n
35 33 34 nfel n sup ran n Z F n x * <
36 35 13 nfrabw _ n x n Z dom F n | sup ran n Z F n x * <
37 7 36 nfcxfr _ n D
38 12 37 nfel n x D
39 11 38 nfan n φ x D
40 16 adantr φ x D Z
41 21 adantlr φ x D n Z F n : dom F n
42 nfcv _ x Z
43 nfcv _ x n
44 2 43 nffv _ x F n
45 44 nfdm _ x dom F n
46 42 45 nfiin _ x n Z dom F n
47 46 ssrab2f x n Z dom F n | sup ran n Z F n x * < n Z dom F n
48 7 47 eqsstri D n Z dom F n
49 id x D x D
50 48 49 sselid x D x n Z dom F n
51 50 23 sylan x D n Z x dom F n
52 51 adantll φ x D n Z x dom F n
53 41 52 ffvelrnd φ x D n Z F n x
54 49 7 eleqtrdi x D x x n Z dom F n | sup ran n Z F n x * <
55 rabidim2 x x n Z dom F n | sup ran n Z F n x * < sup ran n Z F n x * <
56 54 55 syl x D sup ran n Z F n x * <
57 56 adantl φ x D sup ran n Z F n x * <
58 50 adantl φ x D x n Z dom F n
59 58 26 syldan φ x D sup ran n Z F n x * < y n Z F n x y
60 57 59 mpbid φ x D y n Z F n x y
61 39 40 53 60 supxrrernmpt φ x D sup ran n Z F n x * < = sup ran n Z F n x <
62 28 61 mpteq12dva φ x D sup ran n Z F n x * < = x x n Z dom F n | y n Z F n x y sup ran n Z F n x <
63 9 62 eqtrd φ G = x x n Z dom F n | y n Z F n x y sup ran n Z F n x <
64 eqid x n Z dom F n | y n Z F n x y = x n Z dom F n | y n Z F n x y
65 eqid x x n Z dom F n | y n Z F n x y sup ran n Z F n x < = x x n Z dom F n | y n Z F n x y sup ran n Z F n x <
66 1 2 3 4 5 6 64 65 smfsup φ x x n Z dom F n | y n Z F n x y sup ran n Z F n x < SMblFn S
67 63 66 eqeltrd φ G SMblFn S