| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsupxr.n |  |-  F/_ n F | 
						
							| 2 |  | smfsupxr.x |  |-  F/_ x F | 
						
							| 3 |  | smfsupxr.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | smfsupxr.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | smfsupxr.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 6 |  | smfsupxr.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 7 |  | smfsupxr.d |  |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 8 |  | smfsupxr.g |  |-  G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) ) ) | 
						
							| 10 | 7 | a1i |  |-  ( ph -> D = { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 11 |  | nfv |  |-  F/ n ph | 
						
							| 12 |  | nfcv |  |-  F/_ n x | 
						
							| 13 |  | nfii1 |  |-  F/_ n |^|_ n e. Z dom ( F ` n ) | 
						
							| 14 | 12 13 | nfel |  |-  F/ n x e. |^|_ n e. Z dom ( F ` n ) | 
						
							| 15 | 11 14 | nfan |  |-  F/ n ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) | 
						
							| 16 | 3 4 | uzn0d |  |-  ( ph -> Z =/= (/) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) -> Z =/= (/) ) | 
						
							| 18 | 5 | adantr |  |-  ( ( ph /\ n e. Z ) -> S e. SAlg ) | 
						
							| 19 | 6 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) | 
						
							| 20 |  | eqid |  |-  dom ( F ` n ) = dom ( F ` n ) | 
						
							| 21 | 18 19 20 | smff |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) | 
						
							| 22 | 21 | adantlr |  |-  ( ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) | 
						
							| 23 |  | eliinid |  |-  ( ( x e. |^|_ n e. Z dom ( F ` n ) /\ n e. Z ) -> x e. dom ( F ` n ) ) | 
						
							| 24 | 23 | adantll |  |-  ( ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) /\ n e. Z ) -> x e. dom ( F ` n ) ) | 
						
							| 25 | 22 24 | ffvelcdmd |  |-  ( ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 26 | 15 17 25 | supxrre3rnmpt |  |-  ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) -> ( sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR <-> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) ) | 
						
							| 27 | 26 | rabbidva |  |-  ( ph -> { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } ) | 
						
							| 28 | 10 27 | eqtrd |  |-  ( ph -> D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } ) | 
						
							| 29 |  | nfmpt1 |  |-  F/_ n ( n e. Z |-> ( ( F ` n ) ` x ) ) | 
						
							| 30 | 29 | nfrn |  |-  F/_ n ran ( n e. Z |-> ( ( F ` n ) ` x ) ) | 
						
							| 31 |  | nfcv |  |-  F/_ n RR* | 
						
							| 32 |  | nfcv |  |-  F/_ n < | 
						
							| 33 | 30 31 32 | nfsup |  |-  F/_ n sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) | 
						
							| 34 |  | nfcv |  |-  F/_ n RR | 
						
							| 35 | 33 34 | nfel |  |-  F/ n sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR | 
						
							| 36 | 35 13 | nfrabw |  |-  F/_ n { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 37 | 7 36 | nfcxfr |  |-  F/_ n D | 
						
							| 38 | 12 37 | nfel |  |-  F/ n x e. D | 
						
							| 39 | 11 38 | nfan |  |-  F/ n ( ph /\ x e. D ) | 
						
							| 40 | 16 | adantr |  |-  ( ( ph /\ x e. D ) -> Z =/= (/) ) | 
						
							| 41 | 21 | adantlr |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) | 
						
							| 42 |  | nfcv |  |-  F/_ x Z | 
						
							| 43 |  | nfcv |  |-  F/_ x n | 
						
							| 44 | 2 43 | nffv |  |-  F/_ x ( F ` n ) | 
						
							| 45 | 44 | nfdm |  |-  F/_ x dom ( F ` n ) | 
						
							| 46 | 42 45 | nfiin |  |-  F/_ x |^|_ n e. Z dom ( F ` n ) | 
						
							| 47 | 46 | ssrab2f |  |-  { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } C_ |^|_ n e. Z dom ( F ` n ) | 
						
							| 48 | 7 47 | eqsstri |  |-  D C_ |^|_ n e. Z dom ( F ` n ) | 
						
							| 49 |  | id |  |-  ( x e. D -> x e. D ) | 
						
							| 50 | 48 49 | sselid |  |-  ( x e. D -> x e. |^|_ n e. Z dom ( F ` n ) ) | 
						
							| 51 | 50 23 | sylan |  |-  ( ( x e. D /\ n e. Z ) -> x e. dom ( F ` n ) ) | 
						
							| 52 | 51 | adantll |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> x e. dom ( F ` n ) ) | 
						
							| 53 | 41 52 | ffvelcdmd |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 54 | 49 7 | eleqtrdi |  |-  ( x e. D -> x e. { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 55 |  | rabidim2 |  |-  ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR ) | 
						
							| 56 | 54 55 | syl |  |-  ( x e. D -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR ) | 
						
							| 57 | 56 | adantl |  |-  ( ( ph /\ x e. D ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR ) | 
						
							| 58 | 50 | adantl |  |-  ( ( ph /\ x e. D ) -> x e. |^|_ n e. Z dom ( F ` n ) ) | 
						
							| 59 | 58 26 | syldan |  |-  ( ( ph /\ x e. D ) -> ( sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR <-> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) ) | 
						
							| 60 | 57 59 | mpbid |  |-  ( ( ph /\ x e. D ) -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) | 
						
							| 61 | 39 40 53 60 | supxrrernmpt |  |-  ( ( ph /\ x e. D ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) = sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 62 | 28 61 | mpteq12dva |  |-  ( ph -> ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) ) = ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) ) | 
						
							| 63 | 9 62 | eqtrd |  |-  ( ph -> G = ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) ) | 
						
							| 64 |  | eqid |  |-  { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } | 
						
							| 65 |  | eqid |  |-  ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) = ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 66 | 1 2 3 4 5 6 64 65 | smfsup |  |-  ( ph -> ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) e. ( SMblFn ` S ) ) | 
						
							| 67 | 63 66 | eqeltrd |  |-  ( ph -> G e. ( SMblFn ` S ) ) |