Step |
Hyp |
Ref |
Expression |
1 |
|
smfsupxr.n |
|- F/_ n F |
2 |
|
smfsupxr.x |
|- F/_ x F |
3 |
|
smfsupxr.m |
|- ( ph -> M e. ZZ ) |
4 |
|
smfsupxr.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
smfsupxr.s |
|- ( ph -> S e. SAlg ) |
6 |
|
smfsupxr.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
7 |
|
smfsupxr.d |
|- D = { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } |
8 |
|
smfsupxr.g |
|- G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) ) |
9 |
8
|
a1i |
|- ( ph -> G = ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) ) ) |
10 |
7
|
a1i |
|- ( ph -> D = { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } ) |
11 |
|
nfv |
|- F/ n ph |
12 |
|
nfcv |
|- F/_ n x |
13 |
|
nfii1 |
|- F/_ n |^|_ n e. Z dom ( F ` n ) |
14 |
12 13
|
nfel |
|- F/ n x e. |^|_ n e. Z dom ( F ` n ) |
15 |
11 14
|
nfan |
|- F/ n ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) |
16 |
3 4
|
uzn0d |
|- ( ph -> Z =/= (/) ) |
17 |
16
|
adantr |
|- ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) -> Z =/= (/) ) |
18 |
5
|
adantr |
|- ( ( ph /\ n e. Z ) -> S e. SAlg ) |
19 |
6
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) |
20 |
|
eqid |
|- dom ( F ` n ) = dom ( F ` n ) |
21 |
18 19 20
|
smff |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) |
22 |
21
|
adantlr |
|- ( ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) |
23 |
|
eliinid |
|- ( ( x e. |^|_ n e. Z dom ( F ` n ) /\ n e. Z ) -> x e. dom ( F ` n ) ) |
24 |
23
|
adantll |
|- ( ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) /\ n e. Z ) -> x e. dom ( F ` n ) ) |
25 |
22 24
|
ffvelrnd |
|- ( ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) |
26 |
15 17 25
|
supxrre3rnmpt |
|- ( ( ph /\ x e. |^|_ n e. Z dom ( F ` n ) ) -> ( sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR <-> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) ) |
27 |
26
|
rabbidva |
|- ( ph -> { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } ) |
28 |
10 27
|
eqtrd |
|- ( ph -> D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } ) |
29 |
|
nfmpt1 |
|- F/_ n ( n e. Z |-> ( ( F ` n ) ` x ) ) |
30 |
29
|
nfrn |
|- F/_ n ran ( n e. Z |-> ( ( F ` n ) ` x ) ) |
31 |
|
nfcv |
|- F/_ n RR* |
32 |
|
nfcv |
|- F/_ n < |
33 |
30 31 32
|
nfsup |
|- F/_ n sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) |
34 |
|
nfcv |
|- F/_ n RR |
35 |
33 34
|
nfel |
|- F/ n sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR |
36 |
35 13
|
nfrabw |
|- F/_ n { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } |
37 |
7 36
|
nfcxfr |
|- F/_ n D |
38 |
12 37
|
nfel |
|- F/ n x e. D |
39 |
11 38
|
nfan |
|- F/ n ( ph /\ x e. D ) |
40 |
16
|
adantr |
|- ( ( ph /\ x e. D ) -> Z =/= (/) ) |
41 |
21
|
adantlr |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) |
42 |
|
nfcv |
|- F/_ x Z |
43 |
|
nfcv |
|- F/_ x n |
44 |
2 43
|
nffv |
|- F/_ x ( F ` n ) |
45 |
44
|
nfdm |
|- F/_ x dom ( F ` n ) |
46 |
42 45
|
nfiin |
|- F/_ x |^|_ n e. Z dom ( F ` n ) |
47 |
46
|
ssrab2f |
|- { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } C_ |^|_ n e. Z dom ( F ` n ) |
48 |
7 47
|
eqsstri |
|- D C_ |^|_ n e. Z dom ( F ` n ) |
49 |
|
id |
|- ( x e. D -> x e. D ) |
50 |
48 49
|
sselid |
|- ( x e. D -> x e. |^|_ n e. Z dom ( F ` n ) ) |
51 |
50 23
|
sylan |
|- ( ( x e. D /\ n e. Z ) -> x e. dom ( F ` n ) ) |
52 |
51
|
adantll |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> x e. dom ( F ` n ) ) |
53 |
41 52
|
ffvelrnd |
|- ( ( ( ph /\ x e. D ) /\ n e. Z ) -> ( ( F ` n ) ` x ) e. RR ) |
54 |
49 7
|
eleqtrdi |
|- ( x e. D -> x e. { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } ) |
55 |
|
rabidim2 |
|- ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR } -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR ) |
56 |
54 55
|
syl |
|- ( x e. D -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR ) |
57 |
56
|
adantl |
|- ( ( ph /\ x e. D ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR ) |
58 |
50
|
adantl |
|- ( ( ph /\ x e. D ) -> x e. |^|_ n e. Z dom ( F ` n ) ) |
59 |
58 26
|
syldan |
|- ( ( ph /\ x e. D ) -> ( sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) e. RR <-> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) ) |
60 |
57 59
|
mpbid |
|- ( ( ph /\ x e. D ) -> E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y ) |
61 |
39 40 53 60
|
supxrrernmpt |
|- ( ( ph /\ x e. D ) -> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) = sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
62 |
28 61
|
mpteq12dva |
|- ( ph -> ( x e. D |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR* , < ) ) = ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) ) |
63 |
9 62
|
eqtrd |
|- ( ph -> G = ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) ) |
64 |
|
eqid |
|- { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |
65 |
|
eqid |
|- ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) = ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
66 |
1 2 3 4 5 6 64 65
|
smfsup |
|- ( ph -> ( x e. { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z ( ( F ` n ) ` x ) <_ y } |-> sup ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) e. ( SMblFn ` S ) ) |
67 |
63 66
|
eqeltrd |
|- ( ph -> G e. ( SMblFn ` S ) ) |