| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfsupxr.n |
⊢ Ⅎ 𝑛 𝐹 |
| 2 |
|
smfsupxr.x |
⊢ Ⅎ 𝑥 𝐹 |
| 3 |
|
smfsupxr.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
smfsupxr.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
smfsupxr.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 6 |
|
smfsupxr.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 7 |
|
smfsupxr.d |
⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 8 |
|
smfsupxr.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 10 |
7
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
| 13 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 14 |
12 13
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 15 |
11 14
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 16 |
3 4
|
uzn0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → 𝑍 ≠ ∅ ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 19 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 20 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑛 ) = dom ( 𝐹 ‘ 𝑛 ) |
| 21 |
18 19 20
|
smff |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
| 22 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
| 23 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 24 |
23
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 25 |
22 24
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 26 |
15 17 25
|
supxrre3rnmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) → ( sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 27 |
26
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ) |
| 28 |
10 27
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ) |
| 29 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 30 |
29
|
nfrn |
⊢ Ⅎ 𝑛 ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ* |
| 32 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
| 33 |
30 31 32
|
nfsup |
⊢ Ⅎ 𝑛 sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
| 35 |
33 34
|
nfel |
⊢ Ⅎ 𝑛 sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ |
| 36 |
35 13
|
nfrabw |
⊢ Ⅎ 𝑛 { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 37 |
7 36
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐷 |
| 38 |
12 37
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ 𝐷 |
| 39 |
11 38
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
| 40 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑍 ≠ ∅ ) |
| 41 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : dom ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) |
| 42 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 43 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑛 |
| 44 |
2 43
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑛 ) |
| 45 |
44
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑛 ) |
| 46 |
42 45
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 47 |
46
|
ssrab2f |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 48 |
7 47
|
eqsstri |
⊢ 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) |
| 49 |
|
id |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐷 ) |
| 50 |
48 49
|
sselid |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 51 |
50 23
|
sylan |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 52 |
51
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ) |
| 53 |
41 52
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 54 |
49 7
|
eleqtrdi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 55 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) |
| 56 |
54 55
|
syl |
⊢ ( 𝑥 ∈ 𝐷 → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) |
| 58 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ) |
| 59 |
58 26
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 60 |
57 59
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 61 |
39 40 53 60
|
supxrrernmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 62 |
28 61
|
mpteq12dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 63 |
9 62
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) |
| 64 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } |
| 65 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 66 |
1 2 3 4 5 6 64 65
|
smfsup |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 } ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 67 |
63 66
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |