| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfsupxr.n | ⊢ Ⅎ 𝑛 𝐹 | 
						
							| 2 |  | smfsupxr.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 3 |  | smfsupxr.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | smfsupxr.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | smfsupxr.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 6 |  | smfsupxr.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smfsupxr.d | ⊢ 𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 8 |  | smfsupxr.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 10 | 7 | a1i | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑛 𝑥 | 
						
							| 13 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 14 | 12 13 | nfel | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 15 | 11 14 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 16 | 3 4 | uzn0d | ⊢ ( 𝜑  →  𝑍  ≠  ∅ ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  𝑍  ≠  ∅ ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 19 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 20 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑛 )  =  dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 21 | 18 19 20 | smff | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 22 | 21 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 23 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 24 | 23 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 25 | 22 24 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 26 | 15 17 25 | supxrre3rnmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) )  →  ( sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 27 | 26 | rabbidva | ⊢ ( 𝜑  →  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } ) | 
						
							| 28 | 10 27 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } ) | 
						
							| 29 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 30 | 29 | nfrn | ⊢ Ⅎ 𝑛 ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑛 ℝ* | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑛  < | 
						
							| 33 | 30 31 32 | nfsup | ⊢ Ⅎ 𝑛 sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) | 
						
							| 34 |  | nfcv | ⊢ Ⅎ 𝑛 ℝ | 
						
							| 35 | 33 34 | nfel | ⊢ Ⅎ 𝑛 sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ | 
						
							| 36 | 35 13 | nfrabw | ⊢ Ⅎ 𝑛 { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 37 | 7 36 | nfcxfr | ⊢ Ⅎ 𝑛 𝐷 | 
						
							| 38 | 12 37 | nfel | ⊢ Ⅎ 𝑛 𝑥  ∈  𝐷 | 
						
							| 39 | 11 38 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝐷 ) | 
						
							| 40 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑍  ≠  ∅ ) | 
						
							| 41 | 21 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 ) : dom  ( 𝐹 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 43 |  | nfcv | ⊢ Ⅎ 𝑥 𝑛 | 
						
							| 44 | 2 43 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑛 ) | 
						
							| 45 | 44 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 46 | 42 45 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 47 | 46 | ssrab2f | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ⊆  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 48 | 7 47 | eqsstri | ⊢ 𝐷  ⊆  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) | 
						
							| 49 |  | id | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  𝐷 ) | 
						
							| 50 | 48 49 | sselid | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 51 | 50 23 | sylan | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 52 | 51 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 53 | 41 52 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 54 | 49 7 | eleqtrdi | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 55 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝑥  ∈  𝐷  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 58 | 50 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 59 | 58 26 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) ) | 
						
							| 60 | 57 59 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 ) | 
						
							| 61 | 39 40 53 60 | supxrrernmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 62 | 28 61 | mpteq12dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 63 | 9 62 | eqtrd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 64 |  | eqid | ⊢ { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  =  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 } | 
						
							| 65 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) ) | 
						
							| 66 | 1 2 3 4 5 6 64 65 | smfsup | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑛  ∈  𝑍 dom  ( 𝐹 ‘ 𝑛 )  ∣  ∃ 𝑦  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 )  ≤  𝑦 }  ↦  sup ( ran  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ,  ℝ ,   <  ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 67 | 63 66 | eqeltrd | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |