| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem3.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smflimsuplem3.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smflimsuplem3.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smflimsuplem3.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smflimsuplem3.e | ⊢ 𝐸  =  ( 𝑛  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 6 |  | smflimsuplem3.h | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 10 |  | fvex | ⊢ ( 𝐻 ‘ 𝑛 )  ∈  V | 
						
							| 11 | 10 | dmex | ⊢ dom  ( 𝐻 ‘ 𝑛 )  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  dom  ( 𝐻 ‘ 𝑛 )  ∈  V ) | 
						
							| 13 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐻 ‘ 𝑛 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 14 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 15 | 5 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( 𝑛  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ) | 
						
							| 16 |  | eqid | ⊢ { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 17 | 2 | eluzelz2 | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℤ ) | 
						
							| 18 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 19 | 17 18 | uzn0d | ⊢ ( 𝑛  ∈  𝑍  →  ( ℤ≥ ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 20 |  | fvex | ⊢ ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 21 | 20 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 22 | 21 | rgenw | ⊢ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 23 | 22 | a1i | ⊢ ( 𝑛  ∈  𝑍  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 24 | 19 23 | iinexd | ⊢ ( 𝑛  ∈  𝑍  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 26 | 16 25 | rabexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V ) | 
						
							| 27 | 15 26 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 28 |  | fvres | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( 𝐹 ‘ 𝑚 )  =  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑚 )  =  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) | 
						
							| 31 | 30 | dmeqd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) | 
						
							| 32 | 31 | iineq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) | 
						
							| 33 | 32 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) ) | 
						
							| 34 | 29 | fveq1d | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 35 | 34 | mpteq2ia | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 36 | 35 | rneqi | ⊢ ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 37 | 36 | supeq1i | ⊢ sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 40 | 33 39 | anbi12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ )  ↔  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) ) | 
						
							| 41 | 40 | rabbidva2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 42 | 27 41 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 43 | 42 38 | mpteq12dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 44 |  | nfcv | ⊢ Ⅎ 𝑚 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 46 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  ℤ ) | 
						
							| 47 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 48 | 2 | eleq2i | ⊢ ( 𝑛  ∈  𝑍  ↔  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 49 | 48 | biimpi | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 50 |  | uzss | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ℤ≥ ‘ 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝑛  ∈  𝑍  →  ( ℤ≥ ‘ 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 52 | 51 2 | sseqtrrdi | ⊢ ( 𝑛  ∈  𝑍  →  ( ℤ≥ ‘ 𝑛 )  ⊆  𝑍 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ℤ≥ ‘ 𝑛 )  ⊆  𝑍 ) | 
						
							| 54 | 47 53 | fssresd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) : ( ℤ≥ ‘ 𝑛 ) ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 55 |  | eqid | ⊢ { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 56 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 57 | 44 45 46 18 14 54 55 56 | smfsupxr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 58 | 43 57 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 59 | 58 6 | fmptd | ⊢ ( 𝜑  →  𝐻 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 60 | 59 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 61 |  | eqid | ⊢ dom  ( 𝐻 ‘ 𝑛 )  =  dom  ( 𝐻 ‘ 𝑛 ) | 
						
							| 62 | 14 60 61 | smff | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 ) : dom  ( 𝐻 ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 63 | 62 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  dom  ( 𝐻 ‘ 𝑛 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | 
						
							| 64 | 63 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  dom  ( 𝐻 ‘ 𝑛 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 65 | 64 60 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  dom  ( 𝐻 ‘ 𝑛 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 66 |  | eqid | ⊢ { 𝑥  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐻 ‘ 𝑛 )  ∣  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  =  { 𝑥  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐻 ‘ 𝑛 )  ∣  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } | 
						
							| 67 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐻 ‘ 𝑛 )  ∣  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ↦  (  ⇝  ‘ ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐻 ‘ 𝑛 )  ∣  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ↦  (  ⇝  ‘ ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) | 
						
							| 68 | 7 8 9 1 2 12 13 3 65 66 67 | smflimmpt | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑘  ∈  𝑍 ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐻 ‘ 𝑛 )  ∣  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ↦  (  ⇝  ‘ ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ) )  ∈  ( SMblFn ‘ 𝑆 ) ) |