| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsuplem3.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
smflimsuplem3.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
smflimsuplem3.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smflimsuplem3.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
smflimsuplem3.e |
⊢ 𝐸 = ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 6 |
|
smflimsuplem3.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 8 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 9 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 10 |
|
fvex |
⊢ ( 𝐻 ‘ 𝑛 ) ∈ V |
| 11 |
10
|
dmex |
⊢ dom ( 𝐻 ‘ 𝑛 ) ∈ V |
| 12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐻 ‘ 𝑛 ) ∈ V ) |
| 13 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ∈ V ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 15 |
5
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ) |
| 16 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 17 |
2
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
| 18 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
| 19 |
17 18
|
uzn0d |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
| 20 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 21 |
20
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 22 |
21
|
rgenw |
⊢ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 23 |
22
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 24 |
19 23
|
iinexd |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 26 |
16 25
|
rabexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) |
| 27 |
15 26
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 28 |
|
fvres |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 29 |
28
|
eqcomd |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) |
| 31 |
30
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → dom ( 𝐹 ‘ 𝑚 ) = dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) |
| 32 |
31
|
iineq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) |
| 33 |
32
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ) ) |
| 34 |
29
|
fveq1d |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 35 |
34
|
mpteq2ia |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 36 |
35
|
rneqi |
⊢ ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 37 |
36
|
supeq1i |
⊢ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) |
| 38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 39 |
38
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 40 |
33 39
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) ) |
| 41 |
40
|
rabbidva2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 42 |
27 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 43 |
42 38
|
mpteq12dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 44 |
|
nfcv |
⊢ Ⅎ 𝑚 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) |
| 45 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) |
| 46 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ℤ ) |
| 47 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 48 |
2
|
eleq2i |
⊢ ( 𝑛 ∈ 𝑍 ↔ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 49 |
48
|
biimpi |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 50 |
|
uzss |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 51 |
49 50
|
syl |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 52 |
51 2
|
sseqtrrdi |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 54 |
47 53
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) : ( ℤ≥ ‘ 𝑛 ) ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 55 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 56 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 57 |
44 45 46 18 14 54 55 56
|
smfsupxr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 58 |
43 57
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 59 |
58 6
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 60 |
59
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 61 |
|
eqid |
⊢ dom ( 𝐻 ‘ 𝑛 ) = dom ( 𝐻 ‘ 𝑛 ) |
| 62 |
14 60 61
|
smff |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) : dom ( 𝐻 ‘ 𝑛 ) ⟶ ℝ ) |
| 63 |
62
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ dom ( 𝐻 ‘ 𝑛 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 64 |
63
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐻 ‘ 𝑛 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ 𝑛 ) ) |
| 65 |
64 60
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐻 ‘ 𝑛 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 66 |
|
eqid |
⊢ { 𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐻 ‘ 𝑛 ) ∣ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ } = { 𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐻 ‘ 𝑛 ) ∣ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 67 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐻 ‘ 𝑛 ) ∣ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐻 ‘ 𝑛 ) ∣ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
| 68 |
7 8 9 1 2 12 13 3 65 66 67
|
smflimmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐻 ‘ 𝑛 ) ∣ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |