| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem4.1 | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | smflimsuplem4.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | smflimsuplem4.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | smflimsuplem4.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 5 |  | smflimsuplem4.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 6 |  | smflimsuplem4.e | ⊢ 𝐸  =  ( 𝑛  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 7 |  | smflimsuplem4.h | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 8 |  | smflimsuplem4.n | ⊢ ( 𝜑  →  𝑁  ∈  𝑍 ) | 
						
							| 9 |  | smflimsuplem4.i | ⊢ ( 𝜑  →  𝑥  ∈  ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 10 |  | smflimsuplem4.c | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 12 | 3 8 | eluzelz2d | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 13 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑁 )  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 14 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 15 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 16 | 11 2 12 3 13 14 15 | limsupequzmpt | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 18 | 3 8 | uzssd2 | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑁 )  ⊆  𝑍 ) | 
						
							| 19 | 18 | sselda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 20 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 21 | 19 20 | syldan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐹 ‘ 𝑚 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 22 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 23 | 17 21 22 | smff | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐹 ‘ 𝑚 ) : dom  ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) | 
						
							| 24 | 3 6 7 19 | smflimsuplem1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  dom  ( 𝐻 ‘ 𝑚 )  ⊆  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 25 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑥  ∈  ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝐻 ‘ 𝑚 ) ) | 
						
							| 28 | 27 | dmeqd | ⊢ ( 𝑛  =  𝑚  →  dom  ( 𝐻 ‘ 𝑛 )  =  dom  ( 𝐻 ‘ 𝑚 ) ) | 
						
							| 29 | 28 | eleq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  ∈  dom  ( 𝐻 ‘ 𝑛 )  ↔  𝑥  ∈  dom  ( 𝐻 ‘ 𝑚 ) ) ) | 
						
							| 30 | 25 26 29 | eliind | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑥  ∈  dom  ( 𝐻 ‘ 𝑚 ) ) | 
						
							| 31 | 24 30 | sseldd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 32 | 23 31 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 33 | 32 | rexrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 34 | 11 12 13 33 | limsupvaluzmpt | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  inf ( ran  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) ) | 
						
							| 35 | 16 34 | eqtrd | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  inf ( ran  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) ) | 
						
							| 36 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ℤ≥ ‘ 𝑁 )  ⊆  𝑍 ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 38 | 36 37 | sseldd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 39 | 7 | a1i | ⊢ ( 𝜑  →  𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) ) | 
						
							| 40 |  | fvex | ⊢ ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 41 | 40 | mptex | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  V ) | 
						
							| 43 | 39 42 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 44 | 38 43 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 45 | 44 | dmeqd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  dom  ( 𝐻 ‘ 𝑛 )  =  dom  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 46 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 47 | 46 | supex | ⊢ sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  V | 
						
							| 48 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 49 | 47 48 | dmmpti | ⊢ dom  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝐸 ‘ 𝑛 ) | 
						
							| 50 | 49 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  dom  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 51 | 45 50 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  dom  ( 𝐻 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 52 | 1 51 | iineq2d | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐻 ‘ 𝑛 )  =  ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 53 | 9 52 | eleqtrd | ⊢ ( 𝜑  →  𝑥  ∈  ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑥  ∈  ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 55 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ( 𝐸 ‘ 𝑛 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 56 | 54 37 55 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 57 | 47 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  V ) | 
						
							| 58 | 44 57 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 59 | 56 58 | mpdan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 60 |  | eqid | ⊢ { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 61 | 3 | eluzelz2 | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℤ ) | 
						
							| 62 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 63 | 61 62 | uzn0d | ⊢ ( 𝑛  ∈  𝑍  →  ( ℤ≥ ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 64 |  | fvex | ⊢ ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 65 | 64 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 66 | 65 | rgenw | ⊢ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 67 | 66 | a1i | ⊢ ( 𝑛  ∈  𝑍  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 68 | 63 67 | iinexd | ⊢ ( 𝑛  ∈  𝑍  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 70 | 60 69 | rabexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V ) | 
						
							| 71 | 38 70 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V ) | 
						
							| 72 | 6 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V )  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 73 | 38 71 72 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 74 | 56 73 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑥  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 75 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ↔  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 76 | 74 75 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 77 | 76 | simprd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 78 | 59 77 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 79 | 1 59 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  =  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 80 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 81 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 82 | 81 | mpteq1d | ⊢ ( 𝑛  =  𝑘  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 83 | 82 | rneqd | ⊢ ( 𝑛  =  𝑘  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 84 | 83 | supeq1d | ⊢ ( 𝑛  =  𝑘  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 85 |  | nfv | ⊢ Ⅎ 𝑚 ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) ) | 
						
							| 86 |  | eluzelz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑛  ∈  ℤ ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 88 |  | simpr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑘  =  ( 𝑛  +  1 ) ) | 
						
							| 89 | 87 | peano2zd | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  ( 𝑛  +  1 )  ∈  ℤ ) | 
						
							| 90 | 88 89 | eqeltrd | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 91 | 87 | zred | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 92 | 90 | zred | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 93 | 91 | ltp1d | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑛  <  ( 𝑛  +  1 ) ) | 
						
							| 94 | 88 | eqcomd | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  ( 𝑛  +  1 )  =  𝑘 ) | 
						
							| 95 | 93 94 | breqtrd | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑛  <  𝑘 ) | 
						
							| 96 | 91 92 95 | ltled | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑛  ≤  𝑘 ) | 
						
							| 97 | 62 87 90 96 | eluzd | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 98 |  | uzss | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( ℤ≥ ‘ 𝑘 )  ⊆  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 99 | 97 98 | syl | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  ( ℤ≥ ‘ 𝑘 )  ⊆  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 100 |  | fvexd | ⊢ ( ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 101 | 85 99 100 | rnmptss2 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ⊆  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 102 | 101 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ⊆  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 103 |  | nfv | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 104 |  | eqid | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 105 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 106 | 38 105 | syldanl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 107 | 13 | uztrn2 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 108 | 107 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 109 | 106 108 32 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 110 | 103 104 109 | rnmptssd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ⊆  ℝ ) | 
						
							| 111 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 112 | 111 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ℝ  ⊆  ℝ* ) | 
						
							| 113 | 110 112 | sstrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ⊆  ℝ* ) | 
						
							| 114 | 113 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ⊆  ℝ* ) | 
						
							| 115 |  | supxrss | ⊢ ( ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ⊆  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∧  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ⊆  ℝ* )  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ≤  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 116 | 102 114 115 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ≤  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 117 | 3 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 118 | 117 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 119 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 120 |  | fvexd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑁 )  ∈  V ) | 
						
							| 121 | 1 37 | ssdf | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 122 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 123 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 )  =  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) | 
						
							| 124 | 1 12 13 118 18 119 120 121 122 123 | climeldmeqmpt | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝   ↔  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) ) | 
						
							| 125 | 10 124 | mpbid | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) | 
						
							| 126 | 79 125 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  dom   ⇝  ) | 
						
							| 127 | 1 80 12 13 77 84 116 126 | climinf2mpt | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ⇝  inf ( ran  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) ) | 
						
							| 128 | 79 127 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) )  ⇝  inf ( ran  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) ) | 
						
							| 129 | 1 12 13 78 128 | climreclmpt | ⊢ ( 𝜑  →  inf ( ran  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 130 | 35 129 | eqeltrd | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) |