Metamath Proof Explorer


Theorem smflimsuplem4

Description: If H converges, the limsup of F is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem4.1 𝑛 𝜑
smflimsuplem4.m ( 𝜑𝑀 ∈ ℤ )
smflimsuplem4.z 𝑍 = ( ℤ𝑀 )
smflimsuplem4.s ( 𝜑𝑆 ∈ SAlg )
smflimsuplem4.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smflimsuplem4.e 𝐸 = ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
smflimsuplem4.h 𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
smflimsuplem4.n ( 𝜑𝑁𝑍 )
smflimsuplem4.i ( 𝜑𝑥 𝑛 ∈ ( ℤ𝑁 ) dom ( 𝐻𝑛 ) )
smflimsuplem4.c ( 𝜑 → ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ )
Assertion smflimsuplem4 ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 smflimsuplem4.1 𝑛 𝜑
2 smflimsuplem4.m ( 𝜑𝑀 ∈ ℤ )
3 smflimsuplem4.z 𝑍 = ( ℤ𝑀 )
4 smflimsuplem4.s ( 𝜑𝑆 ∈ SAlg )
5 smflimsuplem4.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
6 smflimsuplem4.e 𝐸 = ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
7 smflimsuplem4.h 𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
8 smflimsuplem4.n ( 𝜑𝑁𝑍 )
9 smflimsuplem4.i ( 𝜑𝑥 𝑛 ∈ ( ℤ𝑁 ) dom ( 𝐻𝑛 ) )
10 smflimsuplem4.c ( 𝜑 → ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ )
11 nfv 𝑚 𝜑
12 3 8 eluzelz2d ( 𝜑𝑁 ∈ ℤ )
13 eqid ( ℤ𝑁 ) = ( ℤ𝑁 )
14 fvexd ( ( 𝜑𝑚𝑍 ) → ( ( 𝐹𝑚 ) ‘ 𝑥 ) ∈ V )
15 fvexd ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑥 ) ∈ V )
16 11 2 12 3 13 14 15 limsupequzmpt ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
17 4 adantr ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → 𝑆 ∈ SAlg )
18 3 8 uzssd2 ( 𝜑 → ( ℤ𝑁 ) ⊆ 𝑍 )
19 18 sselda ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → 𝑚𝑍 )
20 5 ffvelrnda ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) )
21 19 20 syldan ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → ( 𝐹𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) )
22 eqid dom ( 𝐹𝑚 ) = dom ( 𝐹𝑚 )
23 17 21 22 smff ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
24 3 6 7 19 smflimsuplem1 ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → dom ( 𝐻𝑚 ) ⊆ dom ( 𝐹𝑚 ) )
25 9 adantr ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → 𝑥 𝑛 ∈ ( ℤ𝑁 ) dom ( 𝐻𝑛 ) )
26 simpr ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → 𝑚 ∈ ( ℤ𝑁 ) )
27 fveq2 ( 𝑛 = 𝑚 → ( 𝐻𝑛 ) = ( 𝐻𝑚 ) )
28 27 dmeqd ( 𝑛 = 𝑚 → dom ( 𝐻𝑛 ) = dom ( 𝐻𝑚 ) )
29 28 eleq2d ( 𝑛 = 𝑚 → ( 𝑥 ∈ dom ( 𝐻𝑛 ) ↔ 𝑥 ∈ dom ( 𝐻𝑚 ) ) )
30 25 26 29 eliind ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → 𝑥 ∈ dom ( 𝐻𝑚 ) )
31 24 30 sseldd ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → 𝑥 ∈ dom ( 𝐹𝑚 ) )
32 23 31 ffvelrnd ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑥 ) ∈ ℝ )
33 32 rexrd ( ( 𝜑𝑚 ∈ ( ℤ𝑁 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑥 ) ∈ ℝ* )
34 11 12 13 33 limsupvaluzmpt ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = inf ( ran ( 𝑛 ∈ ( ℤ𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) )
35 16 34 eqtrd ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = inf ( ran ( 𝑛 ∈ ( ℤ𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) )
36 18 adantr ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( ℤ𝑁 ) ⊆ 𝑍 )
37 simpr ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → 𝑛 ∈ ( ℤ𝑁 ) )
38 36 37 sseldd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → 𝑛𝑍 )
39 7 a1i ( 𝜑𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) )
40 fvex ( 𝐸𝑛 ) ∈ V
41 40 mptex ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V
42 41 a1i ( ( 𝜑𝑛𝑍 ) → ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V )
43 39 42 fvmpt2d ( ( 𝜑𝑛𝑍 ) → ( 𝐻𝑛 ) = ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
44 38 43 syldan ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( 𝐻𝑛 ) = ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
45 44 dmeqd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → dom ( 𝐻𝑛 ) = dom ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
46 xrltso < Or ℝ*
47 46 supex sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ V
48 eqid ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) )
49 47 48 dmmpti dom ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸𝑛 )
50 49 a1i ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → dom ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸𝑛 ) )
51 45 50 eqtrd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → dom ( 𝐻𝑛 ) = ( 𝐸𝑛 ) )
52 1 51 iineq2d ( 𝜑 𝑛 ∈ ( ℤ𝑁 ) dom ( 𝐻𝑛 ) = 𝑛 ∈ ( ℤ𝑁 ) ( 𝐸𝑛 ) )
53 9 52 eleqtrd ( 𝜑𝑥 𝑛 ∈ ( ℤ𝑁 ) ( 𝐸𝑛 ) )
54 53 adantr ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → 𝑥 𝑛 ∈ ( ℤ𝑁 ) ( 𝐸𝑛 ) )
55 eliinid ( ( 𝑥 𝑛 ∈ ( ℤ𝑁 ) ( 𝐸𝑛 ) ∧ 𝑛 ∈ ( ℤ𝑁 ) ) → 𝑥 ∈ ( 𝐸𝑛 ) )
56 54 37 55 syl2anc ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → 𝑥 ∈ ( 𝐸𝑛 ) )
57 47 a1i ( ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) ∧ 𝑥 ∈ ( 𝐸𝑛 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ V )
58 44 57 fvmpt2d ( ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) ∧ 𝑥 ∈ ( 𝐸𝑛 ) ) → ( ( 𝐻𝑛 ) ‘ 𝑥 ) = sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) )
59 56 58 mpdan ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( ( 𝐻𝑛 ) ‘ 𝑥 ) = sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) )
60 eqid { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ }
61 3 eluzelz2 ( 𝑛𝑍𝑛 ∈ ℤ )
62 eqid ( ℤ𝑛 ) = ( ℤ𝑛 )
63 61 62 uzn0d ( 𝑛𝑍 → ( ℤ𝑛 ) ≠ ∅ )
64 fvex ( 𝐹𝑚 ) ∈ V
65 64 dmex dom ( 𝐹𝑚 ) ∈ V
66 65 rgenw 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∈ V
67 66 a1i ( 𝑛𝑍 → ∀ 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∈ V )
68 63 67 iinexd ( 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∈ V )
69 68 adantl ( ( 𝜑𝑛𝑍 ) → 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∈ V )
70 60 69 rabexd ( ( 𝜑𝑛𝑍 ) → { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V )
71 38 70 syldan ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V )
72 6 fvmpt2 ( ( 𝑛𝑍 ∧ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) → ( 𝐸𝑛 ) = { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
73 38 71 72 syl2anc ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( 𝐸𝑛 ) = { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
74 56 73 eleqtrd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → 𝑥 ∈ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
75 rabid ( 𝑥 ∈ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↔ ( 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) )
76 74 75 sylib ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) )
77 76 simprd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ )
78 59 77 eqeltrd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( ( 𝐻𝑛 ) ‘ 𝑥 ) ∈ ℝ )
79 1 59 mpteq2da ( 𝜑 → ( 𝑛 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐻𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ( ℤ𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
80 nfv 𝑘 𝜑
81 fveq2 ( 𝑛 = 𝑘 → ( ℤ𝑛 ) = ( ℤ𝑘 ) )
82 81 mpteq1d ( 𝑛 = 𝑘 → ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
83 82 rneqd ( 𝑛 = 𝑘 → ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
84 83 supeq1d ( 𝑛 = 𝑘 → sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) )
85 nfv 𝑚 ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) )
86 eluzelz ( 𝑛 ∈ ( ℤ𝑁 ) → 𝑛 ∈ ℤ )
87 86 adantr ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 ∈ ℤ )
88 simpr ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 = ( 𝑛 + 1 ) )
89 87 peano2zd ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( 𝑛 + 1 ) ∈ ℤ )
90 88 89 eqeltrd ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 ∈ ℤ )
91 87 zred ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 ∈ ℝ )
92 90 zred ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 ∈ ℝ )
93 91 ltp1d ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 < ( 𝑛 + 1 ) )
94 88 eqcomd ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( 𝑛 + 1 ) = 𝑘 )
95 93 94 breqtrd ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 < 𝑘 )
96 91 92 95 ltled ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛𝑘 )
97 62 87 90 96 eluzd ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 ∈ ( ℤ𝑛 ) )
98 uzss ( 𝑘 ∈ ( ℤ𝑛 ) → ( ℤ𝑘 ) ⊆ ( ℤ𝑛 ) )
99 97 98 syl ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( ℤ𝑘 ) ⊆ ( ℤ𝑛 ) )
100 fvexd ( ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) ∧ 𝑚 ∈ ( ℤ𝑘 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑥 ) ∈ V )
101 85 99 100 rnmptss2 ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ran ( 𝑚 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ⊆ ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
102 101 3adant1 ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ran ( 𝑚 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ⊆ ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
103 nfv 𝑚 ( 𝜑𝑛 ∈ ( ℤ𝑁 ) )
104 eqid ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) )
105 simpll ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝜑 )
106 38 105 syldanl ( ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝜑 )
107 13 uztrn2 ( ( 𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚 ∈ ( ℤ𝑁 ) )
108 107 adantll ( ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚 ∈ ( ℤ𝑁 ) )
109 106 108 32 syl2anc ( ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑥 ) ∈ ℝ )
110 103 104 109 rnmptssd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ⊆ ℝ )
111 ressxr ℝ ⊆ ℝ*
112 111 a1i ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ℝ ⊆ ℝ* )
113 110 112 sstrd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ⊆ ℝ* )
114 113 3adant3 ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ⊆ ℝ* )
115 supxrss ( ( ran ( 𝑚 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ⊆ ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ∧ ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ⊆ ℝ* ) → sup ( ran ( 𝑚 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ≤ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) )
116 102 114 115 syl2anc ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ≤ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) )
117 3 fvexi 𝑍 ∈ V
118 117 a1i ( 𝜑𝑍 ∈ V )
119 fvexd ( ( 𝜑𝑛𝑍 ) → ( ( 𝐻𝑛 ) ‘ 𝑥 ) ∈ V )
120 fvexd ( 𝜑 → ( ℤ𝑁 ) ∈ V )
121 1 37 ssdf ( 𝜑 → ( ℤ𝑁 ) ⊆ ( ℤ𝑁 ) )
122 fvexd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( ( 𝐻𝑛 ) ‘ 𝑥 ) ∈ V )
123 eqidd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( ( 𝐻𝑛 ) ‘ 𝑥 ) = ( ( 𝐻𝑛 ) ‘ 𝑥 ) )
124 1 12 13 118 18 119 120 121 122 123 climeldmeqmpt ( 𝜑 → ( ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐻𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) )
125 10 124 mpbid ( 𝜑 → ( 𝑛 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐻𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ )
126 79 125 eqeltrrd ( 𝜑 → ( 𝑛 ∈ ( ℤ𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ dom ⇝ )
127 1 80 12 13 77 84 116 126 climinf2mpt ( 𝜑 → ( 𝑛 ∈ ( ℤ𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ⇝ inf ( ran ( 𝑛 ∈ ( ℤ𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) )
128 79 127 eqbrtrd ( 𝜑 → ( 𝑛 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐻𝑛 ) ‘ 𝑥 ) ) ⇝ inf ( ran ( 𝑛 ∈ ( ℤ𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) )
129 1 12 13 78 128 climreclmpt ( 𝜑 → inf ( ran ( 𝑛 ∈ ( ℤ𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ )
130 35 129 eqeltrd ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ )