| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsuplem4.1 |
⊢ Ⅎ 𝑛 𝜑 |
| 2 |
|
smflimsuplem4.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
smflimsuplem4.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
smflimsuplem4.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 5 |
|
smflimsuplem4.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 6 |
|
smflimsuplem4.e |
⊢ 𝐸 = ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 7 |
|
smflimsuplem4.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 8 |
|
smflimsuplem4.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 9 |
|
smflimsuplem4.i |
⊢ ( 𝜑 → 𝑥 ∈ ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) dom ( 𝐻 ‘ 𝑛 ) ) |
| 10 |
|
smflimsuplem4.c |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
| 12 |
3 8
|
eluzelz2d |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 13 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 14 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 15 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 16 |
11 2 12 3 13 14 15
|
limsupequzmpt |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑆 ∈ SAlg ) |
| 18 |
3 8
|
uzssd2 |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |
| 19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑚 ∈ 𝑍 ) |
| 20 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 21 |
19 20
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 22 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
| 23 |
17 21 22
|
smff |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 24 |
3 6 7 19
|
smflimsuplem1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → dom ( 𝐻 ‘ 𝑚 ) ⊆ dom ( 𝐹 ‘ 𝑚 ) ) |
| 25 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) dom ( 𝐻 ‘ 𝑛 ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐻 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑚 ) ) |
| 28 |
27
|
dmeqd |
⊢ ( 𝑛 = 𝑚 → dom ( 𝐻 ‘ 𝑛 ) = dom ( 𝐻 ‘ 𝑚 ) ) |
| 29 |
28
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ dom ( 𝐻 ‘ 𝑛 ) ↔ 𝑥 ∈ dom ( 𝐻 ‘ 𝑚 ) ) ) |
| 30 |
25 26 29
|
eliind |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑥 ∈ dom ( 𝐻 ‘ 𝑚 ) ) |
| 31 |
24 30
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 32 |
23 31
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ ) |
| 33 |
32
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ* ) |
| 34 |
11 12 13 33
|
limsupvaluzmpt |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = inf ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 35 |
16 34
|
eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = inf ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 36 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 38 |
36 37
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 39 |
7
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) ) |
| 40 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑛 ) ∈ V |
| 41 |
40
|
mptex |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V ) |
| 43 |
39 42
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 44 |
38 43
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 45 |
44
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → dom ( 𝐻 ‘ 𝑛 ) = dom ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 46 |
|
xrltso |
⊢ < Or ℝ* |
| 47 |
46
|
supex |
⊢ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ V |
| 48 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 49 |
47 48
|
dmmpti |
⊢ dom ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸 ‘ 𝑛 ) |
| 50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → dom ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸 ‘ 𝑛 ) ) |
| 51 |
45 50
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → dom ( 𝐻 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑛 ) ) |
| 52 |
1 51
|
iineq2d |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) dom ( 𝐻 ‘ 𝑛 ) = ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐸 ‘ 𝑛 ) ) |
| 53 |
9 52
|
eleqtrd |
⊢ ( 𝜑 → 𝑥 ∈ ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐸 ‘ 𝑛 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐸 ‘ 𝑛 ) ) |
| 55 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝐸 ‘ 𝑛 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
| 56 |
54 37 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
| 57 |
47
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ V ) |
| 58 |
44 57
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 59 |
56 58
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 60 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 61 |
3
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
| 62 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
| 63 |
61 62
|
uzn0d |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
| 64 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 65 |
64
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 66 |
65
|
rgenw |
⊢ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 67 |
66
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 68 |
63 67
|
iinexd |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 70 |
60 69
|
rabexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) |
| 71 |
38 70
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) |
| 72 |
6
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 73 |
38 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 74 |
56 73
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑥 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 75 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↔ ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 76 |
74 75
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 77 |
76
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) |
| 78 |
59 77
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 79 |
1 59
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 80 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 81 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 82 |
81
|
mpteq1d |
⊢ ( 𝑛 = 𝑘 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 83 |
82
|
rneqd |
⊢ ( 𝑛 = 𝑘 → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 84 |
83
|
supeq1d |
⊢ ( 𝑛 = 𝑘 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 85 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) |
| 86 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑛 ∈ ℤ ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 ∈ ℤ ) |
| 88 |
|
simpr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 = ( 𝑛 + 1 ) ) |
| 89 |
87
|
peano2zd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( 𝑛 + 1 ) ∈ ℤ ) |
| 90 |
88 89
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 91 |
87
|
zred |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 ∈ ℝ ) |
| 92 |
90
|
zred |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 ∈ ℝ ) |
| 93 |
91
|
ltp1d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 < ( 𝑛 + 1 ) ) |
| 94 |
88
|
eqcomd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( 𝑛 + 1 ) = 𝑘 ) |
| 95 |
93 94
|
breqtrd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 < 𝑘 ) |
| 96 |
91 92 95
|
ltled |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑛 ≤ 𝑘 ) |
| 97 |
62 87 90 96
|
eluzd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 98 |
|
uzss |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑛 ) ) |
| 99 |
97 98
|
syl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑛 ) ) |
| 100 |
|
fvexd |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 101 |
85 99 100
|
rnmptss2 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⊆ ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 102 |
101
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⊆ ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 103 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 104 |
|
eqid |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 105 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 106 |
38 105
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 107 |
13
|
uztrn2 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 108 |
107
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 109 |
106 108 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ ) |
| 110 |
103 104 109
|
rnmptssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⊆ ℝ ) |
| 111 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 112 |
111
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ℝ ⊆ ℝ* ) |
| 113 |
110 112
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⊆ ℝ* ) |
| 114 |
113
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⊆ ℝ* ) |
| 115 |
|
supxrss |
⊢ ( ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⊆ ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∧ ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⊆ ℝ* ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ≤ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 116 |
102 114 115
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 = ( 𝑛 + 1 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ≤ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 117 |
3
|
fvexi |
⊢ 𝑍 ∈ V |
| 118 |
117
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 119 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ∈ V ) |
| 120 |
|
fvexd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ∈ V ) |
| 121 |
1 37
|
ssdf |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
| 122 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ∈ V ) |
| 123 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 124 |
1 12 13 118 18 119 120 121 122 123
|
climeldmeqmpt |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
| 125 |
10 124
|
mpbid |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 126 |
79 125
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ dom ⇝ ) |
| 127 |
1 80 12 13 77 84 116 126
|
climinf2mpt |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ⇝ inf ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 128 |
79 127
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ inf ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 129 |
1 12 13 78 128
|
climreclmpt |
⊢ ( 𝜑 → inf ( ran ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ ) |
| 130 |
35 129
|
eqeltrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |