Step |
Hyp |
Ref |
Expression |
1 |
|
limsupvaluzmpt.j |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
limsupvaluzmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
limsupvaluzmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
limsupvaluzmpt.b |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐵 ∈ ℝ* ) |
5 |
1 4
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ* ) |
6 |
2 3 5
|
limsupvaluz |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) = inf ( ran ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) , ℝ* , < ) ) |
7 |
3
|
uzssd3 |
⊢ ( 𝑘 ∈ 𝑍 → ( ℤ≥ ‘ 𝑘 ) ⊆ 𝑍 ) |
8 |
7
|
resmptd |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) ) |
9 |
8
|
rneqd |
⊢ ( 𝑘 ∈ 𝑍 → ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) = ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) ) |
10 |
9
|
supeq1d |
⊢ ( 𝑘 ∈ 𝑍 → sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) = sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) |
11 |
10
|
mpteq2ia |
⊢ ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) = ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) = ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) ) |
13 |
12
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) = ran ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) ) |
14 |
13
|
infeq1d |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) , ℝ* , < ) ) |
15 |
6 14
|
eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) = inf ( ran ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) , ℝ* , < ) ) |