Metamath Proof Explorer


Theorem limsupvaluzmpt

Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupvaluzmpt.j jφ
limsupvaluzmpt.m φM
limsupvaluzmpt.z Z=M
limsupvaluzmpt.b φjZB*
Assertion limsupvaluzmpt φlim supjZB=suprankZsupranjkB*<*<

Proof

Step Hyp Ref Expression
1 limsupvaluzmpt.j jφ
2 limsupvaluzmpt.m φM
3 limsupvaluzmpt.z Z=M
4 limsupvaluzmpt.b φjZB*
5 1 4 fmptd2f φjZB:Z*
6 2 3 5 limsupvaluz φlim supjZB=suprankZsupranjZBk*<*<
7 3 uzssd3 kZkZ
8 7 resmptd kZjZBk=jkB
9 8 rneqd kZranjZBk=ranjkB
10 9 supeq1d kZsupranjZBk*<=supranjkB*<
11 10 mpteq2ia kZsupranjZBk*<=kZsupranjkB*<
12 11 a1i φkZsupranjZBk*<=kZsupranjkB*<
13 12 rneqd φrankZsupranjZBk*<=rankZsupranjkB*<
14 13 infeq1d φsuprankZsupranjZBk*<*<=suprankZsupranjkB*<*<
15 6 14 eqtrd φlim supjZB=suprankZsupranjkB*<*<