Step |
Hyp |
Ref |
Expression |
1 |
|
limsupequzmpt2.j |
|
2 |
|
limsupequzmpt2.o |
|
3 |
|
limsupequzmpt2.p |
|
4 |
|
limsupequzmpt2.a |
|
5 |
|
limsupequzmpt2.b |
|
6 |
|
limsupequzmpt2.k |
|
7 |
|
limsupequzmpt2.e |
|
8 |
|
limsupequzmpt2.c |
|
9 |
4 6
|
uzssd2 |
|
10 |
9
|
adantr |
|
11 |
|
simpr |
|
12 |
10 11
|
sseldd |
|
13 |
8
|
elexd |
|
14 |
12 13
|
jca |
|
15 |
|
rabid |
|
16 |
14 15
|
sylibr |
|
17 |
16
|
ex |
|
18 |
1 17
|
ralrimi |
|
19 |
|
nfcv |
|
20 |
|
nfrab1 |
|
21 |
19 20
|
dfss3f |
|
22 |
18 21
|
sylibr |
|
23 |
20 19
|
resmptf |
|
24 |
22 23
|
syl |
|
25 |
24
|
eqcomd |
|
26 |
25
|
fveq2d |
|
27 |
4 6
|
eluzelz2d |
|
28 |
|
eqid |
|
29 |
4
|
fvexi |
|
30 |
2 29
|
rabexf |
|
31 |
20 30
|
mptexf |
|
32 |
31
|
a1i |
|
33 |
|
eqid |
|
34 |
20 33
|
dmmptssf |
|
35 |
2
|
ssrab2f |
|
36 |
|
uzssz |
|
37 |
4 36
|
eqsstri |
|
38 |
35 37
|
sstri |
|
39 |
34 38
|
sstri |
|
40 |
39
|
a1i |
|
41 |
27 28 32 40
|
limsupresuz2 |
|
42 |
26 41
|
eqtr2d |
|
43 |
5 7
|
uzssd2 |
|
44 |
43
|
adantr |
|
45 |
44 11
|
sseldd |
|
46 |
45 13
|
jca |
|
47 |
|
rabid |
|
48 |
46 47
|
sylibr |
|
49 |
48
|
ex |
|
50 |
1 49
|
ralrimi |
|
51 |
|
nfrab1 |
|
52 |
19 51
|
dfss3f |
|
53 |
50 52
|
sylibr |
|
54 |
51 19
|
resmptf |
|
55 |
53 54
|
syl |
|
56 |
55
|
eqcomd |
|
57 |
56
|
fveq2d |
|
58 |
5
|
fvexi |
|
59 |
3 58
|
rabexf |
|
60 |
51 59
|
mptexf |
|
61 |
60
|
a1i |
|
62 |
|
eqid |
|
63 |
51 62
|
dmmptssf |
|
64 |
3
|
ssrab2f |
|
65 |
|
uzssz |
|
66 |
5 65
|
eqsstri |
|
67 |
64 66
|
sstri |
|
68 |
63 67
|
sstri |
|
69 |
68
|
a1i |
|
70 |
27 28 61 69
|
limsupresuz2 |
|
71 |
57 70
|
eqtr2d |
|
72 |
42 71
|
eqtr4d |
|
73 |
|
eqid |
|
74 |
2 73
|
mptssid |
|
75 |
74
|
fveq2i |
|
76 |
75
|
a1i |
|
77 |
|
eqid |
|
78 |
3 77
|
mptssid |
|
79 |
78
|
fveq2i |
|
80 |
79
|
a1i |
|
81 |
72 76 80
|
3eqtr4d |
|